Skip to main content
Log in

Modification of Montmorillonite with Poly(Oxypropylene) Amine Hydrochlorides: Basal Spacing, Amount Intercalated, and Thermal Stability

  • Published:
Clays and Clay Minerals

Abstract

Few studies have explored the change in thermal stability of poly(oxypropylene) (POP) ammonium ions after intercalation, even though several studies have focused on the modification of montmorillonite (Mt) with POP amine hydrochloride. The purpose of the present study was to understand the effect of chain length of POP amine hydrochlorides on the basal spacing of modified Mt, and the amount and thermal stability of the ammonium ions intercalated. The relations between basal spacing, organic fraction, and thermal stability of the ammonium ions intercalated were also explored. Series of modified Mt were prepared via ion-exchange between Na+-montmorillonite (Na+-Mt) and POP diammonium ions or POP triammonium ions with different chain lengths, and were then characterized by Fourier-transform infrared spectroscopy, X-ray diffraction, and simultaneous differential scanning calorimetry-thermogravimetric analysis. The results revealed that the basal spacing of modified Mt increased with the hydrophobic chain length of the POP ammonium ions. The amount of triammonium ions intercalated was close to the theoretical amount, while the organic fraction of modified Mt was directly proportionalto the basalspacing of modified Mt. The intercalated ammonium ions were, therefore, contained within the interlayer space ofMt. After intercalation, the thermal stability of the POP ammonium ions with various chain lengths was reduced; i.e. Tonset was reduced by 7–60°C for short-chain POP ammonium ions (D400 and T403) and by 177–192°C for long-chain ions (D2000, D4000, T3000, and T5000).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandre, M. and Dubois, P. (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering: R: Reports, 28, 1–63.

    Article  Google Scholar 

  • Bergaya, F. and Lagaly, G. (2001) Surface modification of clay minerals. Applied Clay Science, 19, 1–3.

    Article  Google Scholar 

  • Bergaya, F., Theng, B.K.G., and Lagaly, G., editors (2006) Handbook of Clay Science. Elsevier, Amsterdam.

    Google Scholar 

  • Bergaya, F., Jaber, M., and Lambert, J.F. (2011) Rubber Clay Nanocomposites Science, Technology and Applications (M. Galimberti, editor). J. Wiley & Sons.

  • Becker, O., Varley, R., and Simona, G. (2002) Morphology, thermalrel axations and mechanicalpr operties of layered silicate nanocomposites based upon high-functionality epoxy resins. Polymer, 43, 4365–4373.

    Article  Google Scholar 

  • Boyd, S.A., Sun, S.B., Lee, J.F., and Mortland, M.M. (1988) Pentachlorophenol sorption by organo-clays. Clays and Clay Minerals, 36, 125–130.

    Article  Google Scholar 

  • Chen, K.H. and Yang, S.M. (2002) Synthesis of epoxymontmorillonite nanocomposite. Journal of Applied Polymer Science, 86, 414–421.

    Article  Google Scholar 

  • Chou, C.C., Shieu, F.S., and Lin, J.J. (2003) Preparation, organophilicity, and self-assembly of poly(oxypropylene)amine- clay hybrids. Macromolecules, 36, 2187–2189.

    Article  Google Scholar 

  • Esfandiari, A., Nazokdast, H., Rashidi, A., and Yazdanshenas, M.E. (2008) Review of polymer-organoclay nanocomposites. Journal of Applied Sciences, 8, 545–561.

    Article  Google Scholar 

  • Gu, Z., Song, G.J., Liu, W.S., Yang, S.J., and Gao, J.M. (2010) Structure and properties of hydrogenated nitrile rubber/organo-montmorillonite nanocomposites. Clays and Clay Minerals, 58, 72–78.

    Article  Google Scholar 

  • Guan, G.H., Li, C.C., and Zhang, D. (2005) Spinning and properties of poly(ethylene terephthalate)/organomontmorillonite nanocomposite fibers. Journal of Applied Polymer Science, 95, 1443–1447.

    Article  Google Scholar 

  • Guegan, R., Gautier, M., Beny, J.M., and Muller, F. (2009) Adsorption of surfactant on a Ca-smectite. Clays and Clay Minerals, 57, 502–509.

    Article  Google Scholar 

  • Gupta, V.K. and Suhas. (2009) Application of low-cost adsorbents for dye removal — A review. Journal of Environmental Management, 90, 2313–2342.

    Article  Google Scholar 

  • Hrachová, J., Komadel, P., and Chodák, I. (2009) Natural rubber nanocomposites with organo-modified bentonite. Clays and Clay Minerals, 57, 444–451.

    Article  Google Scholar 

  • Hsu, R.S., Chang, W.H., and Lin, J.J. (2010) Nanohybrids of magnetic iron-oxide particles in hydrophobic organoclays for oilr ecovery. ACS Applied Materials & Interfaces, 2, 1349–1354.

    Article  Google Scholar 

  • Huskić, M., Žagar, E., Žigon, M., Brnardić, I., Macan, J., and Ivanković, M. (2009) Modification of montmorillonite by cationic polyesters. Applied Clay Science, 43, 420–424.

    Article  Google Scholar 

  • Jaber, M. and Lambert, J.F. (2010) A new nanocomposite: L-dopa/Laponite. Journal of Physical Chemistry Letters, 1, 85–88.

    Article  Google Scholar 

  • Jaynes, W.F. and Boyd, S.A. (1991) Hydrophobicity of siloxane surfaces in smectites as revealed by aromatic hydrocarbon adsorption from water. Clays and Clay Minerals, 39, 428–436.

    Article  Google Scholar 

  • Kong, D. and Park, C.E. (2003) Realt ime exfoliation behavior of clay layers in epoxy-clay nanocomposites. Chemistry of Materials, 15, 19–24.

    Article  Google Scholar 

  • Lagaly, G. (1981) Characterization of clays by organic compounds. Clay Minerals, 16, 1–21.

    Article  Google Scholar 

  • Lagaly, G. (1986). Interaction of alkyamines with differents types of layered compounds. Solid State Ionics, 22, 43–51.

    Article  Google Scholar 

  • Lagaly, G. and Weiss, A. (1969) Determination of the layer charge in mica-type layer silicates. Proceedings of the International Clay Conference, Tokyo, 1, 61–80.

    Google Scholar 

  • Laza, A.L., Jaber, M., Miehé-Brendlé, J., Demais, H., Le Deit, H., Delmotte, L., and Vidal, L. (2007) Green nanocomposites: synthesis and characterisation. Journal of Nanoscience and Nanotechnology, 7, 1–7.

    Article  Google Scholar 

  • Lebaron, P.C., Wang, Z., and Pinnavaia, T.J. (1999) Polymerlayered silicate nanocomposites: an overview. Applied Clay Science, 15, 11–29.

    Article  Google Scholar 

  • Li, Z.H. and Jiang, W.T. (2009) Dodecyltrimethylammonium intercalation into rectorite. Clays and Clay Minerals, 57, 194–204.

    Article  Google Scholar 

  • Lin, J.J. and Chen, Y.M. (2004) Amphiphilic properties of poly(oxyalkylene)amine-intercalated smectite aluminosilicates. Langmuir, 20, 4261–4264.

    Article  Google Scholar 

  • Lin, J.J., Cheng, I.J., Wang, R., and Lee, R.J. (2001) Tailoring basal spacings of montmorillonite by poly(oxyalkylene)diamine intercalation. Macromolecules, 34, 8832–8834.

    Article  Google Scholar 

  • Lin, J.J, Cheng, I.J., and Chen, Y.M. (2003) High compatibility of the poly(oxyalkylene)amine-intercalated montmorillonite for epoxy. Polymer Journal, 35, 411–416.

    Article  Google Scholar 

  • Lin, J.J., Chou, C.C., Chang, Y.C., and Chiang, M.L. (2004) Conformationalc hange of tri-functionalp oly(oxypropylene)-amine intercalated in layered silicate confinement. Macromolecules, 37, 473–477.

    Article  Google Scholar 

  • Lin, J.J., Chen, Y.M., and Yu, M.H. (2007) Hydrogen-bond driven intercalation of synthetic fluorinated mica by poly(oxypropylene)-amidoamine salts. Colloids and Surfaces A: Physicochem, 302, 162–167.

    Article  Google Scholar 

  • Lin J.J., Chen, Y.M., Tsai, Y.M., and Chiu, C.W. (2008) Selfassembly of lamellar clay to hierarchical microarrays. The Journal of Physical Chemistry C, 112, 9637–9643.

    Article  Google Scholar 

  • Marras, S.I., Tsimpliaraki, A., Zuburtikudis, I., and Panayiotou, C. (2007) Thermaland colloidalbeh avior of amine-treated clays: The role of amphiphilic organic cation concentration. Journal of Colloid and Interface Science, 315, 520–527.

    Article  Google Scholar 

  • Monvisade, P. and Siriphannon, P. (2009) Chitosan intercalated montmorillonte: Preparation, characterization and cationic dye adsorption. Applied Clay Science, 42, 427–431.

    Article  Google Scholar 

  • Mortland, M.M., Sun, S.B., and Boyd, S.A. (1986) Clayorganic complexes as adsorbents for phenol and chlorophenols. Clays and Clay Minerals, 34, 581–585.

    Article  Google Scholar 

  • Paiva, L.B. de, Morales, A.R., and Valenzuela Díaz, F.R. (2008) Organo-clays: properties, preparation and applications. Applied Clay Science, 42, 8–24.

    Article  Google Scholar 

  • Pinnavaia, T.J. and Beall, G.W. (2000) Polymer-Clay Nanocomposites, Wiley, Chichester, UK.

    Google Scholar 

  • Salahuddin, N.A. (2004) Layered silicate/epoxy nanocomposites: synthesis, characterization and properties. Polymers for Advanced Technologies, 15, 251–259.

    Article  Google Scholar 

  • Salahuddin, N.A., Abo-El-Enein, S.A., Selim, A., and Salah El-Dien, O. (2010) Synthesis and characterization of polyurethane/organo-montmorillonite nanocomposites. Applied Clay Science, 47, 242–248.

    Article  Google Scholar 

  • Šucha, V., Czímerová, A., and Bujdák, J. (2009) Properties of I-S minerals from Rhodamine 6G dye interactions. Clays and Clay Minerals, 57, 361–370.

    Article  Google Scholar 

  • Wang, S.Z. and Zang, X.S. (1991) Modern Research Methods of Materials. Beihang University Press, China (in Chinese).

    Google Scholar 

  • Xi, Y.F., Ding, Z., He, H., and Frost, R.L. (2004) Structure of organo-clays — an X-ray diffraction and thermogravimetric analysis study. Journal of Colloid and Interface Science, 277, 116–120.

    Article  Google Scholar 

  • Xi, Y.F., Frost, R.L., He, H.P., Kloprogge, T., and Bostrom, T. (2005) Modification of Wyoming montmorillonite surfaces using a cationic surfactant. Langmuir, 21, 8675–8680.

    Article  Google Scholar 

  • Xi, Y.F., Frost, R.L., and He, H.P. (2007) Modification of the surfaces of Wyoming montmorillonite by the cationic surfactants alkyl trimethyl, dialkyl dimethyl, and trialkyl methylammonium bromides. Journal of Colloid and Interface Science, 305, 150–158.

    Article  Google Scholar 

  • Xie, W., Gao, Z.M., Pan, W.P., Hunter, D., Singh, A., and Vaia, R. (2001) Thermaldeg radation chemistry of alkyl quaternary ammonium montmorillonite. Chemistry of Materials, 13, 2979–2990.

    Article  Google Scholar 

  • Yadav, L.D.S. and Rai, V.K. (2006) Chemoselective annulation of 1,3-dithiin, -thiazine and -oxathiin rings on thiazoles using a green protocol. Tetrahedron, 62, 8029–8034.

    Article  Google Scholar 

  • Yoon, K.B., Sung, H.D., Hwang, Y.Y., Noh, S.K., and Lee, D.H. (2007) Modification of montmorillonite with oligomeric amine derivatives for polymer nanocomposite preparation. Journal of Applied Polymer Science, 38, 1–8.

    Google Scholar 

  • Zhao, Q. and Samulski, E.T. (2006) A comparative study of poly(methyl methacrylate) and polystyrene/clay nanocomposites prepared in supercriticalcarb on dioxide. Polymer, 47, 663–671.

    Article  Google Scholar 

  • Zhou, L.M., Chen, H., Jiang, X.H., Lu, F., Zhou, Y.F., Yin, W.M., and Ji, X.Y. (2009) Modification of montmorillonite surfaces using a novelcl ass of cationic gemini surfactants. Journal of Colloid and Interface Science, 332, 16–21.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaqing Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Wang, Y., Duan, Y. et al. Modification of Montmorillonite with Poly(Oxypropylene) Amine Hydrochlorides: Basal Spacing, Amount Intercalated, and Thermal Stability. Clays Clay Miner. 59, 507–517 (2011). https://doi.org/10.1346/CCMN.2011.0590508

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2011.0590508

Keywords

Navigation