Skip to main content
Log in

A Critical Textural Evolution Study of Zerovalent Iron/Montmorillonite Nanosized Heterostructures Under Various Iron Loadings

  • Published:
Clays and Clay Minerals

Abstract

Heterostructures formed by nanoparticles hybridized with porous hosts are of great potential in many practical applications such as catalysis, adsorption, and environmental remediation, based on their intrinsic properties. The objectives of this study were to synthesize zerovalent iron nanoparticles/montmorillonite heterostructures and to investigate their textural evolution under different Fe loadings. Iron nanoparticles were hybridized with montmorillonite by impregnation of montmorillonite by ferric ions followed by chemical reduction with sodium borohydride in solution. These hybridized Fe nanoparticles were well dispersed on the montmorillonite surface, size adjustable, and resistant to oxidation under the protection of native Fe-oxide shells. The textural evolution of these heterostructures under various Fe loadings was investigated using nitrogen physisorption, X-ray diffraction, electron microscopy, and elemental analyses. As the Fe loadings increased, the total pore and mesopore volumes were almost unchanged; the total, micropore, and external surface areas as well as the micropore volume decreased; and the average pore diameter increased. These textural changes could be attributed to the filling of the interparticle pores of montmorillonite by a variable amount of Fe nanoparticles. In addition, with increasing Fe loadings, the mesoporous character was enhanced for these heterostructures. These fundamental results are important in understanding the structure of these heterostructures as well as in developing some novel applications in related fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auerbach, S.M., Carrado, K.A., and Dutta, P.K. (2004) Handbook of Layered Materials. Marcel Dekker, New York.

    Google Scholar 

  • Benna, M., Kbir-Ariguib, N., Magnin, A., and Bergaya, F. (1999) Effect of pH on rheological properties of purified sodium bentonite suspensions. Journal of Colloid and Interface Science, 218, 442–455.

    Article  Google Scholar 

  • Bergaya, F. and Lagaly, G. (2006) General Introduction: Clays, Clay Minerals, and Clay Science. Pp. 1–18 in: Handbook of Clay Science (F. Bergaya, B.K.G. Theng, and G. Lagaly, editors). Developments in Clay Science, 1, Elsevier, Amsterdam.

    Article  Google Scholar 

  • Bergaya, F., Mandalia, T., and Amigouët, P. (2005) A brief survey on CLAYPEN and nanocomposites based on unmodified PE and organo-pillared clays. Colloid & Polymer Science, 283, 773–782.

    Article  Google Scholar 

  • Bergaya, F., Theng, B.K.G., and Lagaly, G. (2006) Handbook of Clay Science. Developments in Clay Science, 1. Elsevier, Amsterdam.

  • Bomatí-Miguel, O., Tartaj, P., Morales, M.P., Bonville, P., Golla-Schindler, U., Zhao, X.Q., and Veintemillas-Verdaguer, S. (2006) Core-shell iron-iron oxide nanoparticles synthesized by laser-induced pyrolysis. Small, 2, 1476–1483.

    Article  Google Scholar 

  • Brunauer, S., Emmett, P.H., and Teller, E. (1938) Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309–319.

    Article  Google Scholar 

  • Brunauer, S., Deming, L.S., Deming, W.E., and Teller, E. (1940) On a theory of the van der Waals adsorption of gases. Journal of the American Chemical Society, 62, 1723–1732.

    Article  Google Scholar 

  • Cadene, A., Durand-Vidal, S., Turq, P., and Brendle, J. (2005) Study of individual Na-montmorillonite particles size, morphology, and apparent charge. Journal of Colloid and Interface Science, 285, 719–730.

    Article  Google Scholar 

  • Clinard, C., Mandalia, T., Tchoubar, D., and Bergaya, F. (2003) HRTEM image filtration: nanostructural analysis of a pillared clay. Clays and Clay Minerals, 51, 421–429.

    Article  Google Scholar 

  • Drummy, L.F., Koerner, H., Farmer, K., Tan, A., Farmer, B.L., and Vaia, R.A. (2005) High-resolution electron microscopy of montmorillonite and montmorillonite/epoxy nanocomposites. Journal of Physical Chemistry B, 109, 17868–17878.

    Article  Google Scholar 

  • Elsayed, M.A., Hall, P.J., and Heslop, M.J. (2007) Preparation and structure characterization of carbons prepared from resorcinol-formaldehyde resin by CO2 activation. Adsorption, 13, 299–306.

    Article  Google Scholar 

  • Fung, K.K., Qin, B.X., and Zhang, X.X. (2000) Passivation of α-Fe nanoparticle by epitaxial γ-Fe2O3 shell. Materials Science and Engineering A, 286, 135–138.

    Article  Google Scholar 

  • Gervasini, A. (1999) Characterization of the textural properties of metal loaded ZSM-5zeolites. Applied Catalysis A: General, 180, 71–82.

    Article  Google Scholar 

  • Gil, A. and Gandía, L.M. (2003) Microstructure and quantitative estimation of the micropore-size distribution of an alumina-pillared clay from nitrogen adsorption at 77 K and carbon dioxide adsorption at 273 K. Chemical Engineering Science, 58, 305 9–3075.

    Article  Google Scholar 

  • Gregg, S.J. and Sing, K.S.W. (1982) Adsorption, Surface Area and Porosity. Academic Press, London.

    Google Scholar 

  • Grigorieva, N.A., Grigoriev, S.V., Eckerlebe, H., Eliseev, A.A., Napolskii, K.S., Lukashin, A.V., and Tretyakov, Yu.D. (2006) Magnetic properties of iron nanoparticles in mesoporous silica matrix. Journal of Magnetism and Magnetic Materials, 300, e342–e345.

    Article  Google Scholar 

  • Groen, J.C., Peffer, L.A.A., and Pérez-Ramírez, J. (2003) Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous and Mesoporous Materials, 60, 1–17.

    Article  Google Scholar 

  • He, H., Zhou, Q., Martens, W.N., Kloprogge, T.J., Yuan, P., Xi, Y., Zhu, J., and Frost, R.L. (2006) Microstructure of HDTMA+-modified montmorillonite and its influence on sorption characteristics. Clays and Clay Minerals, 54, 689–696.

    Article  Google Scholar 

  • Huber, D.L. (2005) Synthesis, properties, and applications of iron nanoparticles. Small, 1, 482–501.

    Article  Google Scholar 

  • Johnson, S.A., Brigham, E.S., Ollivier, P.J., and Mallouk, T.E. (1997) Effect of micropore topology on the structure and properties of zeolite polymer replicas. Chemistry of Materials, 9, 2448–2458.

    Article  Google Scholar 

  • Király, Z., Dékány, I., Mastalir, Á., and Bartök, M. (1996) In situ generation of palladium nanoparticles in smectite clays. Journal of Catalysis, 161, 401–408.

    Article  Google Scholar 

  • Lin, C.C.H., Sawada, J.A., Wu, L., Haastrup, T., and Kuznicki, S.M. (2009) Anion-controlled pore size of titanium silicate molecular sieves. Journal of the American Chemical Society, 131, 609–614.

    Article  Google Scholar 

  • Lourakis, M.I.A. (2005) A brief description of the Levenberg- Marquardt algorithm implemented by levmar. Institute of Computer Science Foundation for Research and Technology, Greece, http://www.ics.forth.gr/~lourakis/levmar/levmar.pdf

    Google Scholar 

  • Lu, C.Y., Wei, M.C., Chang, S.H., and Wey, M.Y. (2009) Study of the activity and backscattered electron image of Pt/CNTs prepapared by the polyol process for flue gas purification. Applied Catalysis A: General, 354, 57–62.

    Article  Google Scholar 

  • Mackenzie, R.C.A. (1951) Micromethod for determination of CEC of clay. Journal of Colloid Science, 6, 219–222.

    Google Scholar 

  • Mastalir, Á., Szöllösi, Gy., Kirá ly, Z., and Rázga, Zs. (2002) Preparation and characterization of platinum nanoparticles immobilized in dihydrocinchonidine-modified montmorillonite and hectorite. Applied Clay Science, 22, 9–16.

    Article  Google Scholar 

  • Mitsudome, T., Nose, K., Mori, K., Mizugaki, T., Ebitani, K., Jitsukawa, K., and Kaneda, K. (2007) Montmorilloniteentrapped sub-nanoordered Pd clusters as a heterogeneous catalyst for allylic substitution reactions. Angewandte Chemie International Edition, 46, 3288–3290.

    Article  Google Scholar 

  • Neaman, A., Guillaume, D., Pelletier, M., and Villiéras, F. (2003) The evolution of textural properties of Na/Cabentonite following hydrothermal treatment at 80 and 300°C in the presence of Fe and/or Fe oxides. Clay Minerals, 38, 213–223.

    Article  Google Scholar 

  • Occelli, M.L., Landau, S.D., and Pinnavaia, T.J. (1987) Physicochemical properties of a delaminated clay cracking catalyst. Journal of Catalysis, 104, 331–338.

    Article  Google Scholar 

  • Occelli, M.L., Gould, S.A.C., and Drake, B. (1994) Atomic scale imaging of pillared rectorite catalysts with the atomic force microscope. Microporous Materials, 2, 205–215.

    Article  Google Scholar 

  • Papp, S., Szél, J., Oszkö, A., and Dékány, I. (2004) Synthesis of polymer-stabilized nanosized rhodium particles in the interlayer space of layered silicates. Chemistry of Materials, 16, 1674–1685.

    Article  Google Scholar 

  • Pinnavaia, T.J. (1983) Intercalated clay catalysts. Science, 220, 365–371.

    Article  Google Scholar 

  • Pinnavaia, T.J., Rainey, V., Tzou, M.S., and White, J.W. (1984a) Characterisation of pillared clays by neutron scattering. Journal of Molecular Catalysis, 27, 213–224.

    Article  Google Scholar 

  • Pinnavaia, T.J., Tzou, M.S., Landau, S.D., and Raythatha, R.H. (1984b) On the pillaring and delamination of smectite clay catalysts by polyoxo cations of aluminum. Journal of Molecular Catalysis, 27, 195–212.

    Article  Google Scholar 

  • Quirke, N. and Tennison, S.R.R. (1996) The interpretation of pore size distributions of microporous carbons. Carbon, 34, 1281–1286.

    Article  Google Scholar 

  • Ramos-Tejada, M.M., Arroyo, F.J., Perea, R., and Durán, D.G. (2001) Scaling behavior of the rheological properties of montmorillonite suspensions: correlation between interparticle interaction and degree of flocculation. Journal of Colloid and Interface Science, 235, 251–259.

    Article  Google Scholar 

  • Rutherford, D.W., Chiou, C.T., and Eberl, D.D. (1997) Effects of exchanged cation on the microporosity of montmorillonite. Clays and Clay Minerals, 45, 534–543.

    Article  Google Scholar 

  • Sarathy, V., Salter, A.J., Nurmi, J.T., Johnson, G.O., Johnson, R.L., and Tratnyek, P.G. (2010) Degradation of 1,2,3-trichloropropane (TCP): hydrolysis, elimination, and reduction by iron and zinc. Environmental Science & Technology, 44, 787–793.

    Article  Google Scholar 

  • Séquaris, J.M., Camara Decimavilla, S., and Corrales Ortega, J.A. (2002) Polyvinylpyrrolidone adsorption and structural studies on homoionic Li-, Na-, K-, and Cs-montmorillonite colloidal suspensions. Journal of Colloid and Interface Science, 252, 93–101.

    Article  Google Scholar 

  • Shinoda, T., Onaka, M., and Izumi, Y. (1995) Proposed models of mesopore structures in sulfuric acid-treated montmorillonites and K10. Chemistry Letters, 24, 495–496.

    Article  Google Scholar 

  • Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., and Siemieniewska, T. (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 57, 603–619.

    Article  Google Scholar 

  • Storck, S., Bretinger, H., and Maier, W.F. (1998) Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis. Applied Catalysis A: General, 174, 137–146.

    Article  Google Scholar 

  • Temuujin, J., Jadambaa, Ts., Burmaa, G., Erdenechimeg, Sh., Amarsanaa, J., and MacKenzie, K.J.D. (2004) Characterisation of acid activated montmorillonite clay from Tuulant (Mongolia). Ceramics International, 30, 251–255.

    Article  Google Scholar 

  • Tsiao, C.J., Carrado, K.A., and Botto, R.E. (1998) Investigation of the microporous structure of clays and pillared clays by 129Xe NMR. Microporous and Mesoporous Materials, 21, 45–51.

    Article  Google Scholar 

  • Wang, C.M., Baer, D.R., Thomas, L.E., Amonette, J.E., Antony, J., Qiang, Y., and Duscher, G. (2005) Void formation during early stages of passivation: Initial oxidation of iron nanoparticles at room temperature. Journal of Applied Physics, 98, 094308–094307.

    Article  Google Scholar 

  • Yan, J.M., Zhang, X.B., Han, S., Shioyama, H., and Xu, Q. (2008) Iron-nanoparticle-catalyzed hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. Angewandte Chemie International Edition, 47, 2287–2289.

    Article  Google Scholar 

  • Yuan, P., Yin, X., He, H., Yang, D., Wang, L., and Zhu, J. (2006a) Investigation on the delaminated-pillared structure of TiO2-PILC synthesized by the TiCl4 hydrolysis method. Microporous and Mesoporous Materials, 93, 240–247.

    Article  Google Scholar 

  • Yuan, P., He, H., Bergaya, F., Wu, D., Zhou, Q., and Zhu, J. (2006b) Synthesis and characterization of delaminated ironpillared clay with meso-microporous structure. Microporous and Mesoporous Materials, 88, 8–15.

    Article  Google Scholar 

  • Yuan, P., Fan, M., Yang, D., He, H., Liu, D., Yuan, A., Zhu, J., and Chen, T. (2009) Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions. Journal of Hazardous Materials, 166, 821–829.

    Article  Google Scholar 

  • Zeng, M., Tang, Y., Mi, J., and Zhong, C. (2009) Improved direct correlation function for density functional theory analysis of pore size distributions. Journal of Physical Chemistry C, 113, 17428–17436.

    Article  Google Scholar 

  • Zhang, L. and Manthiram, A. (1996) Ambient temperature synthesis of fine metal particles in montmorillonite clay and their magnetic properties. NanoStructured Materials, 7, 437–451.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, M., Yuan, P., Bergaya, F. et al. A Critical Textural Evolution Study of Zerovalent Iron/Montmorillonite Nanosized Heterostructures Under Various Iron Loadings. Clays Clay Miner. 59, 490–500 (2011). https://doi.org/10.1346/CCMN.2011.0590506

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2011.0590506

Keywords

Navigation