Skip to main content
Log in

Ab Initio Molecular Dynamics Study of Fe-Containing Smectites

  • Published:
Clays and Clay Minerals

Abstract

In order to identify the influences imposed by Fe substitution, density functional theory-based Car-Parrinello molecular dynamics simulations were employed to study both oxidized and reduced Febearing smectites. The following basic properties were investigated: local structures in the clay layer, hydroxyl orientations, and the vibration dynamics of H and Si. Structural analyses indicated that the average Fe-O bond lengths are ~2.08 Å and 2.02 Å in the reduced and oxidized models, respectively, and the Fe substitutions did not affect the coordination structures of the Al-O and Si-O polyhedra. For hydroxyl orientations, Fe(III) substitution had no obvious influence but Fe(II) forces the coordinated hydroxyls to present a wide-angle distribution. Furthermore, the present work has shown that both substitutions can red-shift the hydroxyl in-plane bending mode. The analyses also revealed that Fe(III) substitution has no effect on the Si-O stretching, while Fe reduction causes a blue-shift of the out-of-plane stretching mode. The results provide quantitative constraints and clues for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alimova, A., Katz, A., Steiner, N., Rudolph, E., Wei, H., Steiner, J. C., and Gottlieb, P. (2009) Bacteria-clay interaction: structural changes in smectite induced during biofilm formation. Clays and Clay Minerals, 57, 205–212.

    Article  Google Scholar 

  • Allen, M. P. and Tildesley, D. J. (1987) Computer Simulation of Liquids. Clarendon Press, Oxford, UK.

    Google Scholar 

  • Balan, E., Saitta, A.M., Mauri, F., and Calas, G. (2001) First-principles modeling of the infrared spectrum of kaolinite. American Mineralogist, 86, 1321–1330.

    Article  Google Scholar 

  • Becke, A.D. (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38, 3098–3100.

    Article  Google Scholar 

  • Bishop, J., Murad, E., and Dyar, M.D. (2002) The influence of octahedral and tetrahedral cation substitution on the structure of smectites and serpentines as observed through infrared spectroscopy. Clay Minerals, 37, 617–628.

    Article  Google Scholar 

  • Blanchard, M., Lazzeri, M., Mauri, F., and Balan, E. (2008) First-principles calculation of the infrared spectrum of hematite. American Mineralogist, 93, 1019–1027.

    Article  Google Scholar 

  • Boek, E.S. and Sprik, M. (2003) Abin itio molecular dynamics study of the hydration of a sodium smectite clay. Journal of Physical Chemistry B, 107, 3251–3256.

    Article  Google Scholar 

  • Botella, V., Timon, V., Escamilla-Roa, E., Hernandez-Languna, A., and Sainz-Diaz, C.I. (2004) Hydrogen bonding and vibrational properties of hydroxy groups in the crystal lattice of dioctahedral clay minerals by means of first principles calculations. Physics and Chemistry of Minerals, 31, 475–486.

    Article  Google Scholar 

  • Bougeard, D., Smirnov, K.S., and Geidel, E. (2000) Vibrational spectra and structure of kaolinite: A computer simulation study. Journal of Physical Chemistry B, 104, 9210–9217.

    Article  Google Scholar 

  • Boulet, P., Greenwell, H.C., Stackhouse, S., and Coveney, P.V. (2006) Recent advances in understanding the structure and reactivity of clays using electronic structure calculations. Journal of Molecular Structure: THERMOCHEM, 762, 33–48.

    Article  Google Scholar 

  • Bridgeman, C.H., Buckingham, A.D., Skipper, N.T., and Payne, M.C. (1996) Ab-initio total energy study of uncharged 2:1 clays and their interaction with water. Molecular Physics, 89, 879–888.

    Article  Google Scholar 

  • Calvet, R. (1973) Hydratation de la montmorillonite et diffusion des cations compensateurs. I. Saturation par des cations monovalents. Annales Agronomiques, 24, 77–133.

    Google Scholar 

  • Car, R. and Parrinello, M. (1985) Unified approach for molecular-dynamics and density-functional theory. Physical Review Letters, 55, 2471–2474.

    Article  Google Scholar 

  • Cervini-Silva J., Wu, J., Stucki, J.W., and Larson, R.A. (2000) Adsorption kinetics of pentachloroethane by iron-bearing smectites. Clays and Clay Minerals, 48, 132–138.

    Article  Google Scholar 

  • Churakov, S.V. (2006) Abin itio study of sorption on pyrophyllite: structure and acidity of the edge sites. Journal of Physical Chemistry B, 110, 4135–4146.

    Article  Google Scholar 

  • Cygan, R.T. and Kubicki, J.D. (editors) (2001) Molecular Modeling Theory: Applications in the Geosciences. Volume 42, Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Chantilly, Virginia, and the Geochemical Society, St. Louis, Missouri.

  • Denecke, M. (2006) Actinide speciation using X-ray absorption fine structure spectroscopy. Coordination Chemical Reviews, 250, 730–754.

    Article  Google Scholar 

  • Farmer, V.C. (1974) The layer silicates. Pp. 331–363 in: The Infrared Spectra Of Minerals (V.C. Farmer, editor). Monograph 4, Mineralogical Society, London.

    Chapter  Google Scholar 

  • Favre, F., Stucki, J.W., and Boivin, P. (2006) Redox properties of structural Fe in ferruginous smectite. A discussion of the standard potential and its environmental implications. Clays and Clay Minerals, 54, 466–472.

    Google Scholar 

  • Fialips, C.I., Huo, D.F., Yan, L.B., Wu, J., and Stucki, J.W. (2002) Effect of Fe oxidation state on the IR spectra of Garfield nontronite. American Mineralogist, 87, 630–641.

    Article  Google Scholar 

  • Gaigeot, M.P. and Sprik, M. (2003) Abin itio molecular dynamics computation of the infrared spectrum of aqueous uracil. Journal of Physical Chemistry B, 107, 10344–10358.

    Article  Google Scholar 

  • Gates, W.P. (2008) Cation mass-valence sum (CM-VS) approach to assigning OH-bending bands in dioctahedral smectites. Clays and Clay Minerals, 56, 10–22.

    Article  Google Scholar 

  • Goodman, B.A., Russell, J.D., Fraser, A.R., and Woodhams, F.W.D. (1976) Mössbauer and IR spectroscopic study of structure of nontronite. Clays and Clay Minerals, 24, 53–59.

    Article  Google Scholar 

  • Hernandez-Laguna, A., Escamilla-Roa, E., Timon, V., Dove, M.T., and Sainz-Diaz, C.I. (2006) DFT study of the cation arrangements in the octahedral and tetrahedral sheets of dioctahedral 2:1 phyllosilicates. Physics and Chemistry of Minerals, 33, 655–666.

    Article  Google Scholar 

  • Jaisi, D.P., Dong, H.L., and Morton, J.P. (2008a) Partitioning of Fe(II) in reduced nontronite (NAu-2) to reactive sites: Reactivity in terms of Tc(VII) reduction. Clays and Clay Minerals, 56, 175–189.

    Article  Google Scholar 

  • Jaisi, D.P., Ji, S.S., Dong, H.L., Blake, R.E., Eberl, D.D., and Kim, J.W. (2008b) Role of microbial Fe(III) reduction and solution chemistry in aggregation and settling of suspended particles in the Mississippi River delta plain, Louisiana, USA. Clays and Clay Minerals, 56, 416–428.

    Article  Google Scholar 

  • Kleinman, L. and Bylander, D.M. (1982) Efficacious form for model pseudopotentials. Physical Review Letters, 48, 1425–1428.

    Article  Google Scholar 

  • Kubicki, J.D. and Bleam, W.F. (2003) Molecular Modeling of Clays and Mineral Surfaces. CMS Workshop Lectures volume 12, The Clay Minerals Society, Aurora, Colorado, USA.

  • Larentzos, J.P., Greathouse, J.A., and Cygan, R.T. (2007) An abinitio and classical molecular dynamics investigation of the structural and vibrational properties of talc and pyrophyllite. Journal of Physical Chemistry C, 111, 12752–12759.

    Article  Google Scholar 

  • Lee, C., Yang, W., and Parr, R.G. (1988) Development of the colle-salvetti correlation-energy formula into a functional of the electron-density. Physical Reviews B, 37, 785–789.

    Article  Google Scholar 

  • Liu, X.D., Lu, X.C., Wang, R.C., Zhou, H.Q., and Xu, S.J. (2008) Surface complexes of acetate on edge surfaces of 2:1 type phyllosilicate: Insights from density functional theory calculation. Geochimica et Cosmochimica Acta, 72, 5896–5907.

    Article  Google Scholar 

  • Manceau, A., Drits, V.A., Lanson, B., Chateigner, D., Wu, J., Huo, D., Gates, W.P., and Stucki, J.W. (2000) Oxidationreduction mechanism of iron in dioctahedral smectites: II. Crystal chemistry of reduced Garfield nontronite. American Mineralogist, 85, 153–172.

    Article  Google Scholar 

  • Murad, E. and Fischer, W.R. (1988) Geobiochemical cycle of iron. Pp. 1–18 in: Iron in Soils and Clay Minerals (J.W. Stucki, B.A. Goodman, and U. Schwertmann, editors). D. Reidel, Dordrecht, The Netherlands.

    Google Scholar 

  • Peretyazhko, T., Zachara, J.M., Heald, S.M., Jeon, B.H., Kukkadapu, R.K., Liu, C., Moore, D., and Resch, C.T. (2008) Heterogeneous reduction of Tc(VII) by Fe(II) at the solid-water interface. Geochimica et Cosmochimica Acta, 72, 1521–1539.

    Article  Google Scholar 

  • Petit, S. (2006) Fourier transform infrared spectroscopy. Pp. 909–918 in: Handbook of Clay Science (F. Bergaya, B.K.G. Theng, and G. Lagaly, editors). Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • Refson, K., Park, S.H., and Sposito, G. (2003) Abi nitio computational crystallography of 2:1 clay minerals: 1. Pyrophyllite-1Tc. Journal ofPhysical Chemistry B, 107, 13376–13383.

    Article  Google Scholar 

  • Rosso, K.M. and Ilton, E.S. (2003) Charge transport in micas: The kinetics of Fe-II/III electron transfer in the octahedral sheet. Journal of Chemical Physics, 119, 9207–9218.

    Article  Google Scholar 

  • Sainz-Diaz, C.I., Escamilla-Roa, E., and Hernandez-Laguna, A. (2004) Pyrophyllite dehydroxylation process by first principles calculations. American Mineralogist, 89, 1092–1100.

    Article  Google Scholar 

  • Sainz-Diaz, C.I., Timon, V., Botella, V., Artacho, E., and Hernandez-Laguna, A. (2002) Quantum mechanical calculations of dioctahedral 2:1 phyllosilicates: Effect of octahedral cation distributions in pyrophyllite, illite, and smectite. American Mineralogist, 87, 958–965.

    Article  Google Scholar 

  • Sprik, M., Hutter, J., and Parrinello, M. (1996) Abi nitio molecular dynamics simulation of liquid water: Comparison three gradient-corrected density functionals. Journal of Chemical Physics, 105, 1142–1152.

    Article  Google Scholar 

  • Stackhouse, S., Coveney, P.V., and Sandre, E. (2001) Plane-wave density functional theoretic study of formation of claypolymer nanocomposite materials by self-catalyzed in situ intercalative polymerization. Journal oft he American Chemical Society, 123, 11764–11774.

    Article  Google Scholar 

  • Stucki, J.W. (2006) Properties and behavior of iron in clay minerals. Pp. 423–476 in: Handbook of Clay Science (F. Bergaya, B.K.G. Theng, and G. Lagaly, editors). Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • Stucki, J.W., Lee, K., Zhang, L.Z., and Larson, R.A. (2002) Effects of iron oxidation state on the surface and structural properties of smectites. Pure and Applied Chemistry, 74, 2145–2158.

    Article  Google Scholar 

  • Teppen, B.J., Yu, C.H., Newton, S.Q., Miller, D.M., and Schafer, L. (2002) Quantum molecular dynamics simulations regarding the dechlorination of trichloro ethene in the interlayer space of the 2:1 clay mineral nontronite. Journal of Physical Chemistry A, 106, 5498–5503.

    Article  Google Scholar 

  • Troullier, N. and Martins, J.L. (1991) Efficient pseudopotentials for plane-wave calculations. Physical Reviews B, 43, 1993–2006.

    Article  Google Scholar 

  • Viani, A., Gaultieri, A.F., and Artioli, G. (2002) The nature of disorder in montmorillonite by simulation of X-ray powder patterns. American Mineralogist, 87, 966–975.

    Article  Google Scholar 

  • Wang, J., Kalinichev, A.G., Amonette, J., and Kirkpatrick, R.J. (2003) Interlayer structure and dynamics of Cl-bearing hydrotalcite: far infrared spectroscopy and molecular dynamics modeling. American Mineralogist, 88, 398–409.

    Article  Google Scholar 

  • Yan, L. and Stucki, J.W. (1999) Effects of structural Fe oxidation state on the coupling of interlayer water and structural Si-O stretching vibrations in montmorillonite. Langmuir, 15, 4648–4657.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiandong Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Meijer, E.J., Lu, X. et al. Ab Initio Molecular Dynamics Study of Fe-Containing Smectites. Clays Clay Miner. 58, 89–96 (2010). https://doi.org/10.1346/CCMN.2010.0580109

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2010.0580109

Key Words

Navigation