Skip to main content
Log in

Polarized ATR-FTIR investigation of Fe reduction in the Uley nontronites

  • Published:
Clays and Clay Minerals

Abstract

Reduction of structural Fe in smectites affects the surface chemical behavior of the clay, but the underlying mechanism and changes in clay structure are still in need of investigation, particularly with respect to changes in the tetrahedral sheet. The purpose of this study was to probe changes in the tetrahedral sheet that occur when structural Fe is reduced in the Uley nontronites, NAu-1 and NAu-2, using polarized attenuated total internal reflection Fourier-transform infrared spectroscopy. Despite the differences in their structures — NAu-2 has tetrahedral Fe3+ while NAu-1 does not — the changes observed in the Si-O stretching region were quite similar. Reduction results in a shift of the in-plane Si-O stretching modes to lower frequencies, while the out-of-plane Si-O stretch shifts to higher frequencies. The magnitude of these shifts is greater in NAu-2 than in NAu-1, but the crystallinity of the tetrahedral silicate sheet of NAu-2 is preserved upon reduction. In both nontronites, the orientation of the out-of-plane Si-O bond changes and becomes completely perpendicular to the basal (001) surface of the clay, indicating the formation of trioctahedral domains wherein the individual tetrahedra reorient relative to the plane of the clay layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cardile, C.M. (1989) Tetrahedral iron in smectite: A critical comment. Clays and Clay Minerals, 37, 185–188.

    Article  Google Scholar 

  • Cervini-Silva, J., Wu, J., Larson, R.A., and Stucki, J.W. (2000) Transformation of chloropicrin in the presence of iron-bearing clay minerals. Environmental Science and Technology, 34, 915–917.

    Article  Google Scholar 

  • Cervini-Silva, J., Kostka, J.E., Larson, R.A., Stucki, J.W., and Wu, J. (2003) Dehydrochlorination of 1,1,1-trichloroethane and pentachloroethane by microbially reduced ferruginous smectite. Environmental Toxicology and Chemistry, 22, 1046–1050.

    Article  Google Scholar 

  • Drits, V.A. and Manceau, A. (2000) A model for the mechanism of Fe3+ to Fe2+ reduction in dioctahedral smectites. Clays Clay Minerals, 48, 185–195.

    Article  Google Scholar 

  • Eisner, M., Schwarzenbach, R.P., and Haderlein, S.B. (2004) Reactivity of Fe(II)-bearing minerals toward reductive transformation of organic contaminants. Environmental Science and Technology, 38, 799–807.

    Article  Google Scholar 

  • Farmer, V.C. and Russell, J.D. (1964) The infra-red spectra of layer silicates. Spectrochimica Acta, 20, 1149–1173.

    Article  Google Scholar 

  • Fialips, C.-I., Huo, D., Yan, L., Wu, J., and Stucki, J.W. (2002a) Infrared study of reduced and reduced-reoxidized ferruginous smectite. Clays and Clay Minerals, 50, 455–469.

    Article  Google Scholar 

  • Fialips, C.-I., Huo, D., Yan, L., Wu, J., and Stucki, J.W. (2002b) Effect of Fe oxidation state on the IR spectra of Garfield nontronite. American Mineralogist, 87, 630–641.

    Article  Google Scholar 

  • Frost, R.L., Kloprogge, J.T., and Ding, Z. (2002) The Garfield and Uley nontronites — an infrared spectroscopic comparison. Spectrochimica Acta Part A, 58, 1881–1894.

    Article  Google Scholar 

  • Gates, W.P., Slade, P.G., Manceau, A., and Lanson, B. (2002) Site occupancies by iron in nontronites. Clays and Clay Minerals, 50, 223–239.

    Article  Google Scholar 

  • Hofstetter, T.B., Neumann, A., and Schwarzenbach, R.P. (2006) Reduction of nitroaromoatic compounds by Fe(II) species associated with iron-rich smectites. Environmental Science and Technology, 40, 235–242.

    Article  Google Scholar 

  • Jaisi, D.P., Kukkadapu, R.K., Eberl, D.D., and Dong, H. (2005) Control of Fe(III) site occupancy on the rate and extent of microbial reduction of Fe(III) in nontronite. Geochimica et Cosmochimica Acta, 69, 5429–5440.

    Article  Google Scholar 

  • Johnston, C.T. and Premachandra, G.S. (2001) Polarized ATR-FTIR study of smectite in aqueous suspension. Langmuir, 17, 3712–3718.

    Article  Google Scholar 

  • Keeling, J.L., Raven, M.D., and Gates, W.P. (2000) Geology and characterization of two hydrothermal nontronites from weathered metamorphic rocks at the Uley Graphite Mine, South Australia. Clays and Clay Minerals, 48, 537–548.

    Article  Google Scholar 

  • Kloprogge, J.T. and Frost, R.L. (2005) Infrared emission spectroscopy of clay minerals. Pp. 99–124 in: Application of Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides (J.T. Kloprogge, editor). CMS Workshop Lectures, 13, The Clay Minerals Society, Boulder, Colorado, USA.

    Google Scholar 

  • Komadel, P., Lear, P.R., and Stucki, J.W. (1990) Reduction and reoxidation of nontronite: Extent of reduction and reaction rates. Clays and Clay Minerals, 38, 203–208.

    Article  Google Scholar 

  • Komadel, P., Madejová, J., and Stucki, J.W. (1995) Reduction and reoxidation of nontronite: Questions of reversability. Clays and Clay Minerals, 43, 105–110.

    Article  Google Scholar 

  • Lee, J.H. and Guggenheim, S. (1981) Single crystal X-ray refinement of pyrophyllite-1Tc. American Mineralogist, 66, 350–357.

    Google Scholar 

  • Lee, K., Kostka, J.E., and Stucki, J.W. (2006) Comparisons of structural Fe reduction in smectites by bacteria and dithionite: An infrared spectroscopic study. Clays and Clay Minerals, 54, 195–208.

    Article  Google Scholar 

  • Madejová, J. (2003) FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31, 1–10.

    Article  Google Scholar 

  • Manceau, A., Drits, V.A., Lanson, B., Chateigner, J., Wu, J., Huo, D., Gates, W.P., and Stucki, J.W. (2000) Oxidation-reduction mechanism of iron in dioctahedral smectites: II. Crystal chemistry of reduced Garfield nontronite. American Mineralogist, 85, 153–172.

    Article  Google Scholar 

  • Merola, R.B., Fournier, E.D., and McGuire, M.M. (2007) Spectroscopic investigations of Fe2+ complexation on nontronite clay. Langmuir, 23, 1223–1226.

    Article  Google Scholar 

  • Nzengung, V.A., Castillo, R.M., Gates, W.P. and Mills, G.L. (2001) Abiotic transformation of perchloroethylene in homogeneous dithionite solution and in suspensions of dithionite-treated clay minerals. Environmental Science and Technology, 35, 2244–2251.

    Article  Google Scholar 

  • Ribeiro, F.R., Lee, K., Stucki, J.W., and Fabris, J.D. (2004a) Effects of redox reactions on the structure of Garfield nontronite: A Mössbauer spectroscopic study. Pp. 467–470 in: Applied Mineralogy, Developments in Science and Technology (M. Pecchio et al., editors). ICAM, Sao Paulo, Brazil.

    Google Scholar 

  • Ribeiro, F.R., Stucki, J.W., Larson, R.A., Marley, K.A., Komadel, P., and Fabris, J.D. (2004b) Degradation of oxamyl by redox-modified smectites: Effects of pH, layer charge, and extent of Fe reduction. Pp. 471–474 in: Applied Mineralogy, Developments in Science and Technology (M. Pecchio, F.R.D. Andrade, L.Z D’Agostino, H. Kahn, L.M. Sant’Agostino, and M.M.M.L. Tassinari, editors). ICAM, Sao Paulo, Brazil.

    Google Scholar 

  • Stucki, J.W. and Roth, C.B. (1976) Interpretation of infrared spectra of oxidized and reduced nontronite. Clays and Clay Minerals, 24, 293–296.

    Article  Google Scholar 

  • Vaniman, D. (2001) Standard operating procedure for clay mineral and zeolite separation. Los Alamos National Laboratory, SOP-09.05.

  • Xu, J.C., Stucki, J.W., Wu, J., Kostka, J.E., and Sims, G.K. (2001) Fate of atrazine and alachlor in redox-treated ferruginous smectite. Environmental Toxicology and Chemistry, 20, 2717–2724.

    Article  Google Scholar 

  • Yan, L.B. and Bailey, G.W. (2001) Sorption and abiotic redox transformation of nitrobenzene at the smectite-water interface. Journal of Colloid and Interface Science, 241, 142–153.

    Article  Google Scholar 

  • Yan, L. and Stucki, J.W. (1999) Effects of structural Fe oxidation state on the coupling of interlayer water and structural Si-O stretching vibrations in montmorillonite. Langmuir, 15, 4648–4657.

    Article  Google Scholar 

  • Yan, L. and Stucki, J.W. (2000) Structural perturbations in the solid-water interface of redox transformed nontronite. Journal of Colloid and Interface Science, 225, 429–439.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Molly M. McGuire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bzdek, B.R., McGuire, M.M. Polarized ATR-FTIR investigation of Fe reduction in the Uley nontronites. Clays Clay Miner. 57, 227–233 (2009). https://doi.org/10.1346/CCMN.2009.0570209

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2009.0570209

Key Words

Navigation