Skip to main content
Log in

Bacteria-clay interaction: Structural changes in smectite induced during biofilm formation

  • Published:
Clays and Clay Minerals

Abstract

Bacteria play an important role in determining the properties and behavior of clay minerals in natural environments and such interactions have great potential for creating stable biofilms and carbon storage sites in soils, but our knowledge of these interactions are far from complete. The purpose of this study was to understand better the effects of bacteria-generated biofilms on clay interlayer expansion. Mixtures of a colloidal, 2-water hectorite clay and Pseudomonas syringae in a minimal media suspension evolve into a polysaccharide-rich biofilm aggregate in time-series experiments lasting up to 1 week. X-ray diffraction analysis reveals that upon aggregation, the clay undergoes an initial interlayer contraction. Short-duration experiments, up to 72 h, result in a decrease in the d001 value from 1.50 to 1.26 nm. The initial interlayer contraction is followed in long-duration (up to 1 week) experiments by an expansion of the d001 value of 1.84 nm. The expansion is probably a result of large, biofilm-produced, polymeric molecules being emplaced in the interlayer site. The resultant organo-clay could provide a possible storage medium for carbon in a microbial colony setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alimova, A., Roberts, M., Katz, A., Rudolph, E., Steiner, J.C., Alfano, R.R., and Gottlieb, P. (2006) Effects of smectite clay on biofilm formation by microorganisms. Biofilms, 3, 47–54.

    Article  Google Scholar 

  • Amellal, N., Burtin, G., Bartoli, F., and Heulin, T. (1998) Colonization of wheat roots by an exopolysaccharide-producing pantoea agglomerans strain and its effect on rhizosphere soil aggregation. Applied and Environmental Microbiology, 64, 3740–3747.

    Google Scholar 

  • Anderson, J.U. (1961) An improved pretreatment for mineralogical analysis of samples containing organic matter. Clays and Clay Minerals, 10, 380–388.

    Article  Google Scholar 

  • Baumgartner, L.K., Reid, R.P., Dupraz, C., Decho, A.W., Buckley, D.H., Spear, J.R., Przekop, P.K.M., and Visscher, P.T. (2006) Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries. Sedimentary Geology, 185, 131–145.

    Article  Google Scholar 

  • Bitton, G., Henis, Y., and Lahav, N. (1972) Effect of several clay minerals and humic acid on the survival of Klebsiella aerogenes exposed to ultraviolet irradiation. Applied Microbiology, 23, 870–874.

    Google Scholar 

  • Bloemberg, G.V. and Lugtenberg, B.J.J. (2004) Bacterial Biofilms on Plants: Relevance and Phenotypic Aspects. ASM Press, Washington, D.C.

    Google Scholar 

  • Bulson, P.C., Johnstone, D.L., Gibbons, H.L., and Funk, W.H. (1984) Removal and inactivation of bacteria during alum treatment of a lake. Applied and Environmental Microbiology, 48, 425–430.

    Google Scholar 

  • Burton, G.A., Jr., Gunnison, D., and Lanza, G.R. (1987) Survival of pathogenic bacteria in various freshwater sediments. Applied and Environmental Microbiology, 53, 633–638.

    Google Scholar 

  • Chafetz, H.S. and Buczynski, C. (1992) Bacterially induced lithification of microbial mats. Palaios, 7, 277–293.

    Article  Google Scholar 

  • Costerton, J.W., Cheng, K.J., Geesey, G.G., Ladd, T.I., Nickel, J.C., Dasgupta, M., and Marrie, T.J. (1987) Bacterial biofilms in nature and disease. Annual Review of Microbiology, 41, 435–464.

    Article  Google Scholar 

  • Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, D.R., and Lappin-Scott, H.M. (1995) Microbial biofilms. Annual Review of Microbiology, 49, 711–745.

    Article  Google Scholar 

  • Curry, K.J., Bennett, R.H., Mayer, L.M., Curry, A., Abril, M., Biesiot, P.M., and Hulbert, M.H. (2007) Direct visualization of clay microfabric signatures driving organic matter preservation in fine-grained sediment. Geochimica et Cosmochimica Acta, 71, 1709–1720.

    Article  Google Scholar 

  • Darder, M. and Ruiz-Hitzky, E. (2005) Caramel-clay nanocomposites. Journal of Materials Chemistry, 15, 3913–3918.

    Article  Google Scholar 

  • Davey, M.E. and O’toole, G.A. (2000) Microbial biofilms: from ecology to molecular genetics. Microbiology and Molecular Biology Reviews, 64, 847–867.

    Article  Google Scholar 

  • Difco (1953) Manual of Dehydrated Culture Media and Reagents for Microbiological and Clinical Laboratory Procedures Laboratories. Difco Laboratories, Detroit, USA)

    Google Scholar 

  • Dorioz, J.M., Robert, M., and Chenu, C.(1993) The role of roots, fungi and bacteria on clay particle organization. An experimental approach. Geoderma, 56, 179–194.

    Article  Google Scholar 

  • Dupraz, C. and Visscher, P.T. (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends in Microbiology, 13, 429–438.

    Article  Google Scholar 

  • Fortin, D. and Beveridge, T.J. (1997) Microbial sulfate reduction within sulfidic mine tailings: formation of diagenetic Fe-sulfides. Geomicrobiology Journal, 14, 1–21.

    Article  Google Scholar 

  • Fortin, D., Ferris, F.G., and Beveridge, T.J. (1997) Surface-mediated mineral development by bacteria. Pp. 161–180 in: Geomicrobiology: Interactions Between Microbes and Minerals (J.F. Banfield and K.H. Nealson, editors). Reviews in Mineralogy, 35, Mineralogical Society of America, Washington, D.C.

    Chapter  Google Scholar 

  • Gerbersdorf, S.U., Jancke, T., Westrich, B., and Paterson, D.M. (2008) Microbial stabilization of riverine sediments by extracellular polymeric substances. Geobiology, 6, 57–69.

    Google Scholar 

  • Griffin, D., Garrison, V., Herman, J., and Shinn, E. (2001) African desert dust in the Caribbean atmosphere: Microbiology and public health. Aerobiologia, 17, 203–213.

    Article  Google Scholar 

  • Griffin, D.W., Kellogg, C.A., Garrison, V.H., Lisle, J.T., Borden, T.C., and Shinn, E.A. (2003) Atmospheric microbiology in the northern Caribbean during African dust events. Aerobiologia, 19, 143–157.

    Article  Google Scholar 

  • Hedges, J.I. and Oades, J.M. (1997) Comparative organic geochemistries of soils and marine sediments. Organic Geochemistry, 27, 319–361.

    Article  Google Scholar 

  • Jackson, G.A. and Burd, A.B. (1998) Aggregation in the marine environment. Environmental Science and Technology, 32, 2805–2814.

    Article  Google Scholar 

  • Konhauser, K.O., Schultze-Lam, S., Ferris, F.G., Fyfe, W.S., Longstaffe, F.J., and Beveridge, T.J. (1994) Mineral precipitation by epilithic biofilms in the Speed River, Ontario, Canada. Applied and Environmental Microbiology, 60, 549–553.

    Google Scholar 

  • Kostka, J.E., Wu, J., Nealson, K.H., and Stucki, J.W. (1999) The impact of structural Fe(III) reduction by bacteria on the surface chemistry of smectite clay minerals. Geochimica et Cosmochimica Acta, 63, 3705–3713.

    Article  Google Scholar 

  • Kostka, J.E., Dalton, D.D., Skelton, H., Dollhopf, S., and Stucki, J.W. (2002) Growth of Iron(III)-reducing bacteria on clay minerals as the sole electron acceptor and comparison of growth yields on a variety of oxidized iron forms. Applied and Environmental Microbiology, 68, 6256–6262.

    Article  Google Scholar 

  • Lee, A.K. and Newman, D.K. (2003) Microbial iron respiration: impacts on corrosion processes. Applied Microbiology and Biotechnology, 62, 134–139.

    Article  Google Scholar 

  • Little, B.J., Wagner, P.A., and Mansfeld, F. (1991) Microbiologically influenced corrosion of metals and alloys. International Materials Reviews, 36, 253–272.

    Article  Google Scholar 

  • Little, B.J., Wagner, P.A., and Lewandowski, Z. (1997) Spatial relationships between bacteria and mineral surfaces. Pp. 123–155 in: Geomicrobiology — Interactions Between Microbes and Minerals (J.F. Banfield and K.H. Nealson, editors). Reviews in Mineralogy, 35, Mineralogical Society of America, Washington D.C.

    Chapter  Google Scholar 

  • McCarthy, M. (2001) Dust clouds implicated in spread of infection. The Lancet, 358, 478.

    Article  Google Scholar 

  • Mikutta, R., Kleber, M., Kaiser, K., and Jahn, R. (2005) Review: organic matter removal from soils using hydrogen peroxide, sodium hypochlorite, and disodium peroxodisulfate. Soil Science Society of America Journal, 69, 120–135.

    Article  Google Scholar 

  • Moore, D. and Reynolds, R.C., Jr. (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals, Oxford University Press, New York.

    Google Scholar 

  • O’Toole, G.A. and Kolter, R. (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Molecular Microbiology, 30, 295–304.

    Article  Google Scholar 

  • Pina, R.G. and Cervantes, C. (1996) Microbial interactions with aluminium. Biometals, 9, 311–316.

    Article  Google Scholar 

  • Pope, D., Duquette, D., Wayner, P.C., and Johannes, A.H. (1984) Microbiologically Influenced Corrosion: A State of the Art Review. Columbus, OH, Materials Technology Institute of Chemical Process Industries.

    Google Scholar 

  • Ransom, B., Kim, D., Kastner, M., and Wainwright, S. (1998) Organic matter preservation on continental slopes: importance of mineralogy and surface area. Geochimica et Cosmochimica Acta, 62, 1329–1345.

    Article  Google Scholar 

  • Ransom, B., Bennett, R.H., Baerwald, R., Hulbert, M.H., and Burkett, P.-J. (1999) In situ conditions and interactions between microbes and minerals in fine-grained marine sediments; a TEM microfabric perspective. American Mineralogist, 84, 183–192.

    Article  Google Scholar 

  • Reid, R.P., Visscher, P.T., Decho, A.W., Stolz, J.F., Bebout, B.M., Dupraz, C., Macintyre, I.G., Paerl, H.W., Pinckney, J.L., Prufert-Bebout, L., Steppe, T.F., and Desmarais, D.J. (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature, 406, 989–992.

    Article  Google Scholar 

  • Roberts, J.A. (2004) Inhibition and enhancement of microbial surface colonization: the role of silicate composition. Chemical Geology, 212, 313–327.

    Article  Google Scholar 

  • Ruiz-Conde, A., Ruiz-Amil, A., Perez-Rodriguez, J.L., Sanchez-Soto, P.J., and De La Cruz, F.A. (1997) Interaction of vermiculite with aliphatic amides (formamide, acetamide and propionamide): formation and study of interstratified phases in the transformation of Mg- to NH4-vermiculite. Clays and Clay Minerals, 45, 311–326.

    Article  Google Scholar 

  • Scappini, F., Casadei, F., Zamboni, R., Franchi, M., Gallori, E., and Monti, S. (2004) Protective effect of clay minerals on adsorbed nucleic acid against UV radiation: possible role in the origin of life. International Journal of Astrobiology, 3, 17–19.

    Article  Google Scholar 

  • Stal, L.J. (2003) Microphytobenthos, their extracellular polymeric substances, and the morphogenesis of intertidal sediments. Geomicrobiology Journal, 20, 463–478.

    Article  Google Scholar 

  • Stucki, J.W. and Kostka, J.E. (2006) Microbial reduction of iron in smectite. Comptes Rendus Geosciences, 338, 468–475.

    Article  Google Scholar 

  • Stucki, J.W., Komadel, P., and Wilkinson, H.T. (1987) Microbial reduction of structural iron(III) in smectites. Soil Science Society of America Journal, 51, 1663–1665.

    Article  Google Scholar 

  • Stucki, J.W., Jun, W., Gan, H., Komadel, P., and Banin, A. (2000) Effects of iron oxidation state and organic cations on dioctahedral smectite hydration. Clays and Clay Minerals, 48, 290–298.

    Article  Google Scholar 

  • Sutherland, T.F., Amos, C.L., and Grant, J. (1998) The effect of buoyant biofilms on the erodibility of sublittoral sediments of a temperate microtidal estuary. Limnology and Oceanography, 43, 225–235.

    Article  Google Scholar 

  • Taylor, D.A. (2002) DUST in the WIND. Environmental Health Perspectives, 110, A80–87.

    Google Scholar 

  • Ueshima, M. and Tazaki, K. (2001) Possible role of microbial polysaccharides in nontronite formation. Clays and Clay Minerals, 49, 292–299.

    Article  Google Scholar 

  • Vieira, M.J., Pacheco, A.P., Pinho, I.A., and Melo, L.F. (2001) The effect of clay particles on the activity of suspended autotrophic nitrifying bacteria and on the performance of an air-lift reactor. Environmental Technology, 22, 123–135.

    Article  Google Scholar 

  • Zhang, S.-Y., Wang, J.-S., Jiang, Z.-C., and Chen, M.-X. (2000) Nitrite accumulation in an Attapulgas clay biofilm reactor by fulvic acids. Bioresource Technology, 73, 91–93.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Gottlieb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alimova, A., Katz, A., Steiner, N. et al. Bacteria-clay interaction: Structural changes in smectite induced during biofilm formation. Clays Clay Miner. 57, 205–212 (2009). https://doi.org/10.1346/CCMN.2009.0570207

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2009.0570207

Key Words

Navigation