Skip to main content
Log in

Transformation of synthetic Zn-stevensite to Zn-talc induced by the Hofmann-Klemen effect

  • Published:
Clays and Clay Minerals

Abstract

Stevensite-like sauconite, with the general composition: \({\rm{S}}{{\rm{i}}_4}\left( {{\rm{Z}}{{\rm{n}}_{3 - x}}{\square _x}} \right){{\rm{O}}_{10}}{\left( {{\rm{OH}}} \right)_2}R_{2x}^ + \), where □ is a vacant site, was synthesized. The objective was to study the possible migration of some cations (Li+ and Zn2+) within such trioctahedral smectites, under heating, following the so-called ‘Hofmann-Klemen’ (HK) effect. The initial gel was divided into five aliquots and placed in teflon-coated hydrothermal reactors with distilled water, and these were hydrothermally treated at 80, 100, 120, 150, and 200°C, respectively, over 30 days. X-ray diffraction (XRD) analysis confirmed that the samples synthesized were smectites. The number of vacant sites (x) per half unit cell (O10(OH)2) ranged from nearly 0 to 0.23 but no simple relationship was established between x and the temperature of synthesis. The samples were Li+- and Zn2+-saturated, and heated overnight at 300°C (HK treatment). Cation exchange capacity measurements were made by Fourier transform infrared spectroscopy (FTIR) on \({\rm{NH}}_4^ + \)-saturated samples. After LiHK treatment, the structural formula of samples could be expressed as: \({\rm{S}}{{\rm{i}}_4}{\rm{Z}}{{\rm{n}}_{\left( {3 - x} \right)}}{\rm{L}}{{\rm{i}}_x}{{\rm{O}}_{10}}{\left( {{\rm{OH}}} \right)_2}{\rm{NH}}_{4x}^{\; + }\), while after ZnHK treatment, it could be expressed as: Si4Zn3O10(OH)2. Analysis by XRD and FTIR showed that the samples moved from a Zn-stevensite-like structure to Zn-talc-like structure after treatment with ZnHK. These results are interpreted asevidence that Zn2+ (and Li+) migrated into the previously vacant sites under HK treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brindley, G.W. (1980) Kerolite and pimelite P. 167 in: Crystal Structures of Clay Minerals and their X-ray Identification (G.W. Brindley and G. Brown, editors). Monograph 5, Mineralogical Society, London.

    Google Scholar 

  • Cuevas, J., Ramirez, S., Petit, S., Meunier, A., and Leguey, S. (2003) Chemistry of Mg smectites in lacustrine sediments from the Vicálvaro sepiolite deposit, Madrid Neogene basin (Spain). Clays and Clay Minerals, 51, 457–472.

    Article  Google Scholar 

  • Czímerová, A., Bujdák, J., and Dohrmann, R. (2006) Traditional and novel methodsfor estimating the layer charge of smectites. Applied Clay Science, 34, 2–13.

    Article  Google Scholar 

  • Decarreau, A. (1985) Partitioning of divalent transition elements between octahedral sheets of trioctahedral smectites and water. Geochimica et Cosmochimica Acta, 44, 1537–1544.

    Article  Google Scholar 

  • Decarreau, A., Grauby, O., and Petit, S. (1992) The actual distribution of octahedral cations in 2:1 clay minerals: results from clay synthesis. Applied Clay Science, 7, 147–167.

    Article  Google Scholar 

  • Decarreau, A., Petit, S., Martin, F., Farges, F., Vieillard, P., and Joussein, J. (2008) Hydrothermal synthesis between 75 and 150°C of high-charge ferric nontronites. Clays and Clay Minerals, 56, 322–337.

    Article  Google Scholar 

  • Emmerich, K., Madsen, F.T., and Kahr, G. (1999) Dehydroxylation behavior of heat treated and steam treated homoionic cis-vacant montmorillonites. Clays and Clay Minerals, 47, 591–604.

    Article  Google Scholar 

  • Emmerich, K., Plötze, M., and Kahr, G. (2001) Reversible collapse and Mg2+ release of de- and rehydroxylated homoionic cis-vacant montmorillonites. Applied Clay Science, 19, 143–154.

    Article  Google Scholar 

  • Esquevin, J. (1955) Synthèse de montmorillonites zincifères. Comptes Rendus Academie des Science, t. 241, n° 21, 1485–1486.

    Google Scholar 

  • Esquevin, J. (1956) Synthèse de phyllites zincifères. Bulletin du Groupe Français des Argiles, t. 8, n° 3, 23–27.

    Article  Google Scholar 

  • Esquevin, J. (1960) Les silicates de zinc. Etude de produits de synthèse. Annales Agronomiques, 11, 497–556.

    Google Scholar 

  • Faust, G.T. (1951) Thermal analysis and X-ray studies of sauconite and of some zinc minerals of the same paragenetic association. American Mineralogist, 36, 795–822.

    Google Scholar 

  • Genth, F.A. (1875) Mineralogy of Pennsylvania. Second Geological Survey, Pennsylvania, p. 120-B.

  • Greene-Kelly, R. (1953) The identification of montmorillonoids in clay. Journal of Soil Science, 4, 233–247.

    Article  Google Scholar 

  • Greene-Kelly, R. (1955) Dehydration of montmorillonite minerals. Mineralogical Magazine, 30, 604–615.

    Article  Google Scholar 

  • Higashi, S., Miki, K., and Komarneni, S. (2002) Hydrothermal synthesis of Zn-smectites. Clays and Clay Minerals, 50, 299–305.

    Article  Google Scholar 

  • Hofmann U. and Klemen R. (1950) Verlust des Austauschfähigkeit von Lithiumionen an Bentonit durch Erhitzung. Zeitschrift für Anorganische und Allgemeine Chemie, 262, 95–99.

    Article  Google Scholar 

  • Isaure, M.P., Manceau, A., Geoffroy, N., Laboudigue A., Tamura, N., and Marcus, M. (2005) Zinc mobility and speciation in soil covered by contaminated dredged sediment using micrometer-scale and bulk-averaging X-ray fluorescence, absorption and diffraction techniques. Geochimica et Cosmochimica Acta, 69, 1173–1198.

    Article  Google Scholar 

  • Jaynes, W.F. and Bigham, J.M. (1987) Charge reduction, octahedral charge, and lithium retention in heated, Li-saturated smectites. Clays and Clay Minerals, 35, 440–448.

    Article  Google Scholar 

  • Jaynes, W.F., Traina, S.J., Bigham, J.M., and Johnston C.T. (1992) Preparation and characterization of reduced-charge hectorites. Clays and Clay Minerals, 40, 397–404.

    Article  Google Scholar 

  • Kloprogge, T., Komarneni, S., and Amonette, J. (1999) Synthesis of smectite clay minerals: a critical review. Clays and Clay Minerals, 47, 529–554.

    Article  Google Scholar 

  • Komadel, P., Madejová, J., and Bujdák, J. (2005) Preparation and properties of reduced-charge smectites — a review. Clays and Clay Minerals, 53, 313–334.

    Article  Google Scholar 

  • Kotochigova, S.A. and Zucker, D.S. (2005) X-ray Form Factor, Attenuation and Scattering Tables (version 2.1). https://doi.org/physics.nist.gov/ffast (viewed by the author on 05/22/08). National Institute of Standards and Technology, Gaithersburg, Maryland. [Originally published as Chantler, C.T. (1995) Journal of Physical and Chemical Reference Data, 24, 71-643; and Chantler, C.T. (2000) Journal of Physical and Chemical Reference Data, 29, 597–1048.].

  • Leggett, G. (1978) Interaction of monomeric silicic acid with copper and zinc and chemical changes of the precipitates with aging. Soil Science Society of America Journal, 42, 262–268.

    Article  Google Scholar 

  • Meier, L.P. and Nüesch, R. (1999) The lower cation exchange capacity limit of montmorillonite. Journal of Colloid and Interface Science, 217, 77–85.

    Article  Google Scholar 

  • Mench, M.J., Manceau, A., Vangronsveld, J., Clusters, H., and Mocquot, B. (2000) Capacity of soil amendments in lowering the phytoavailability of sludge-borne zinc. Agronomie, 20, 383–397.

    Article  Google Scholar 

  • Mizutani, T., Fukushima, Y., and Kamigaito, O. (1990) Mechanism of the copolymerization of silicic acid and metal ionsin aqueousmedia. Bulletin of the Chemical Society of Japan, 63, 618–619.

    Article  Google Scholar 

  • Petit, S. (1990) Etude cristallochimique de kaolinites ferrifères et cuprifèresde synthèse (150–250°C). PhD thesis, Université de Poitiers, France, 238 pp.

    Google Scholar 

  • Petit, S. (2005) Crystal-chemistry of talcs: a NIR and MIR spectroscopic approach. Pp. 41–64 in: The Application of Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides (J.T. Kloprogge, editor). CMS Workshop Lectures, 13, The Clay Minerals Society, Aurora, Colorado.

    Google Scholar 

  • Petit, S., Righi, D., Madejová, J., and Decarreau, A. (1998) Layer charge of smectites: quantification and localization using infrared spectroscopy. Clay Minerals, 33, 579–591.

    Article  Google Scholar 

  • Petit, S., Righi, D., and Madejová, J. (2006) Infrared spectroscopy of \({\rm{NH}}_4^ + \)-bearing and saturated clay minerals: A review of the study of layer charge. Applied Clay Science, 34, 22–30.

    Article  Google Scholar 

  • Polyak, V.J. and Güven, N. (2000) Authigenesis of trioctahedral smectite in magnesium-rich carbonate speleothems in Carlsbad cavern and other caves of the Guadalupe mountains, New Mexico. Clays and Clay Minerals, 48, 317–321.

    Article  Google Scholar 

  • Purnell, J.H., and Lu, Y. (1993) Ionic migration and charge reduction in Ni2+, Co2+, and Zn2+-exchanged Texas montmorillonite. Catalysis Letters, 18, 235–241.

    Article  Google Scholar 

  • Righi, D., Petit, S., and Bouchet, A., (1993) Characterization of hydroxy-interlayered vermiculite and illite/smectite interstratified minerals from the weathering of chlorite in a cryorthod. Clays and Clay Minerals, 41, 484–495.

    Article  Google Scholar 

  • Righi, D., Terribile, F., and Petit, S. (1998) Pedogenetic formation of high-charge beidellite in a vertisol of Sardinia (Italy). Clays and Clay Minerals, 46, 167–177.

    Article  Google Scholar 

  • Ross, C.S. (1946) Sauconite — a clay mineral of the montmorillonite group. American Mineralogist, 31, 411–424.

    Google Scholar 

  • Roy, D.M. and Mumpton, F.A. (1956) Stability of minerals in the system Zn-SiO2-H2O. Economic Geology, 51, 432–443.

    Article  Google Scholar 

  • Schlegel, M. and Manceau, A. (2006) Evidence for the nucleation and epitaxial growth of Zn phyllosilicate on montmorillonite. Geochimica et Cosmochimica Acta, 70, 901–917.

    Article  Google Scholar 

  • Schlegel, M., Manceau, A., Charlet, L., Chateigner, D., and Hazemann, J.-L. (2001) Sorption of metal ions on clay minerals. III. Nucleation and epitaxial growth of Zn phyllosilicate on the edges of hectorite. Geochimica et Cosmochimica Acta, 65, 4155–4170.

    Article  Google Scholar 

  • Tiller, K.G. and Pickering, J.G. (1974) The synthesis of zinc silicates at 20°C and atmospheric pressure. Clays and Clay Minerals, 22, 409–416.

    Article  Google Scholar 

  • Usui, K., Sato, T., and Tanaka, M. (1987) Process for the preparation of a synthetic crystalline zinc silicate mineral having a sauconite, willemite or hemimorphite structure. US patent 4681749. Date issued: 21 July.

  • Yeniyol, M. (2007) Characterization of a Mg-rich and low-charge saponite from the Neogene lacustrine basin of Eskisehir, Turkey. Clay Minerals, 42, 541–548.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Petit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petit, S., Righi, D. & Decarreau, A. Transformation of synthetic Zn-stevensite to Zn-talc induced by the Hofmann-Klemen effect. Clays Clay Miner. 56, 645–654 (2008). https://doi.org/10.1346/CCMN.2008.0560605

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2008.0560605

Key Words

Navigation