Skip to main content
Log in

Ionic liquids-kaolinite nanostructured materials. Intercalation of pyrrolidinium salts

  • Published:
Clays and Clay Minerals

Abstract

Ionic liquids intercalated in kaolinite constitute a novel class of nanostructured material. Kaolinite-pyrrolidinium halide intercalates have been prepared successfully by reacting the pyrrolidinium salts with kaolinite which was preintercalated with dimethyl sulfoxide (DMSO) using the melt condition under N2. X-ray diffraction, 13C magic angle spinning nuclear magnetic resonance, differential thermal analysis (DTA)-thermal gravimetric analysis, and Fourier transform infrared spectroscopy confirm the displacement of DMSO during the intercalation process. Based on results from the various characterization techniques, a structural model is proposed in which one mole of the pyrrolidinium salt covers two or three structural units of kaolinite, depending on the structure and size of the salt. The thermal stability was improved remarkably after intercalation of the pyrrolidinium salts, compared to the pre-intercalate. The DTA-TGA data show that the largest number of organic units released and decomposed, occurs under N2 flow, at temperatures ranging from 260 to 340°C, depending on the nature of the intercalated organic salts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey, S.W. (editor) (1988) Hydrous Phyllosilicates (exclusive of Micas). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington, D.C.

    Google Scholar 

  • Benco, L., Tunega, D., Hafner, J., and Lischka, H. (2001) Orientation of OH groups in kaolinite and dickite: ab initio molecular dynamics study. American Mineralogist, 86, 1057–1065.

    Article  Google Scholar 

  • Branco, L.C., Crespo J.G., and Afonso, C.A.M. (2002a) Highly selective transport of organic compounds by using supported liquid membranes based on ionic liquids. Angewandte Chemie, 41, 2771–2773.

    Article  Google Scholar 

  • Branco, L.C., Crespo, J.G., and Afonso, C.A.M. (2002b) Studies on the selective transport of organic compounds by using ionic liquids as novel supported liquid membranes. Chemistry — A European Journal, 8, 3865–3871.

    Article  Google Scholar 

  • Brandt, K.B., Elboki, T.A., and Detellier, C. (2003) Intercalation and interlamellar grafting of polyols in layered aluminosilicates. D-Sorbitol and adonitol derivatives of kaolinite. Journal of Materials Chemistry, 13, 2566–2572.

    Article  Google Scholar 

  • Buzzeo, M.C., Hardacre, C., and Compton, R.G. (2004) Use of room temperature ionic liquids in gas sensor design. Analytical Chemistry, 76, 4583–4588.

    Article  Google Scholar 

  • Deng, Y., White, G.N., and Dixon, J.B. (2002) Effect of structural stress on the intercalation rate of kaolinite. Journal of Colloid and Interface Science, 250, 379–393.

    Article  Google Scholar 

  • Earle, M.J. and Seddon, K.R (2000) Ionic liquids. Green solvents for the future. Pure and Applied Chemistry, 72, 1391–1398.

    Article  Google Scholar 

  • Elboki, T.A and Detellier, C. (2005) Interlamellar grafting of polyols in kaolinite. Clay Science, 12, 38–46.

    Google Scholar 

  • Elboki, T.A and Detellier, C. (2006) Aluminosilicate nanohybrid materials. Intercalation of polystyrene in kaolinite. Journal of Physics and Chemistry of Solids, 67, 950–955.

    Article  Google Scholar 

  • Frost, R.L. and Kristof, J. (2004) Raman and infrared spectroscopic studies of kaolinite surfaces modified by intercalation. Interface Science and Technology, 1, 184–215.

    Article  Google Scholar 

  • Gardolinski, J.E.F.C. and Lagaly, G. (2005a) Grafted organic derivatives of kaolinite: I. Synthesis, chemical and Theological characterization. Clay Minerals, 40, 537–546.

    Article  Google Scholar 

  • Gardolinski, J.E.F.C. and Lagaly, G. (2005b) Grafted organic derivatives of kaolinite: II. Intercalation of primary n-alkylamines and delamination. Clay Minerals, 40, 547–556.

    Article  Google Scholar 

  • Gardolinski, J.E., Carrera, L.C.M., Cantão, M.P., and Wypych, F. (2000) Layered polymer-kaolinite nanocomposites. Journal of Materials Science, 35, 3113–3119.

    Article  Google Scholar 

  • Hayashi, S. (1997) NMR study of dynamics and evolution of guest molecules in kaolinite/dimethyl sulfoxide intercalation compound. Clays and Clay Minerals, 45, 724–732.

    Article  Google Scholar 

  • Itagaki, T. and Kuroda, K. (2003) Organic modification of the interlayer surface of kaolinite with propanediols by transesterification. Journal of Materials Chemistry, 13, 1064–1068.

    Article  Google Scholar 

  • Itagaki, T., Komori, Y., Sugahara, Y., and Kuroda, K. (2001) Synthesis of a kaolinite-poly(β-alanine) intercalation compound. Journal of Materials, 11, 3291–3295.

    Google Scholar 

  • Johnston, C.T., Sposito, G., Bocian, D.F., and Birge, R.R. (1984) Vibrational spectroscopic study of the interlamellar kaolinite-dimethyl sulfoxide complex. Journal of Physical Chemistry, 88, 5959–5964.

    Article  Google Scholar 

  • Komori, Y., Sugahara Y., and Kuroda K. (1999) Direct intercalation of poly(vinylpyrrolidone) into kaolinite by a refined guest displacement method. Chemistry of Materials, 11, 3–6.

    Article  Google Scholar 

  • Lagaly, G., Ogawa, M., and Dékány, I. (2006) Clay mineral organic interactions. Pp. 309–377 in: Handbook of Clay Science (F. Bergaya, B.K.G. Theng, and G. Lagaly, editors). Developments in Clay Science, 1, Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • Letaief, S. and Detellier, C. (2005) Reactivity of kaolinite in ionic liquids: preparation and characterization of a 1-ethyl pyridinium chloride-kaolinite intercalate. Journal of Materials Chemistry, 15, 4734–4740.

    Article  Google Scholar 

  • Letaief, S. and Detellier, C. (2007a) Nanohybrid materials from the intercalation of imidazolium ionic liquids in kaolinite. Journal of Materials Chemistry, 17, 1476–484.

    Article  Google Scholar 

  • Letaief, S. and Detellier, C. (2007b) Functionalized nanohybrid materials obtained from the interlayer grafting of aminoalcohols on kaolinite. Chemical Communications, 25, 2613–2615.

    Article  Google Scholar 

  • Letaief, S., Elbokl, T.A., and Detellier, C. (2006) Reactivity of ionic liquids with kaolinite: melt intersalation of ethyl pyridinium chloride in a urea-kaolinite pre-intercalate. Journal of Colloid and Interface Science, 302, 254–258.

    Article  Google Scholar 

  • Martens, W.N., Frost, R.L., Kristof, J., and Horvath, E. (2002) Modification of kaolinite surfaces through intercalation with deuterated dimethylsulfoxide. Journal of Physical Chemistry B, 106, 4162–4171.

    Article  Google Scholar 

  • Murakami, J., Itagaki, T., and Kuroda, K. (2004) Synthesis of kaolinite-organic nanohybrids with butanediols. Solid State Ionics, 172, 279–282.

    Article  Google Scholar 

  • Neder, R.B., Burghammer, M., Grasl, Th., Schulz, H., Bram, A., and Fiedler, S. (1999) Refinement of the kaolinite structure from single-crystal synchrotron data. Clays and Clay Minerals, 47, 487–494.

    Article  Google Scholar 

  • Sanz, J. and Serratosa, J.M. (1984) Silicon-29 and aluminum-27 high-resolution MAS-NMR spectra of phyllosilicates. Journal of the American Chemical Society, 106, 4790–4793.

    Article  Google Scholar 

  • Sekhon, S.S., Lalia, B.S., Park, J.S., Kim, C.S., and Yamada, K. (2006) Physicochemical properties of proton conducting membranes based on ionic liquid impregnated polymer for fuel cells. Journal of Materials Chemistry, 16, 2256–2265.

    Article  Google Scholar 

  • Sun, J., MacFarlane, D.R., and Forsyth, M. (2001) N,N-Dimethylpyrrolidinium hydroxide: a highly conductive solid material at ambient temperature. Journal of Materials Chemistry, 11, 2940–2942.

    Article  Google Scholar 

  • Tunney, J.J. and Detellier, C. (1993) Interlamellar covalent grafting of organic units on kaolinite. Chemistry of Materials, 5, 747–748.

    Article  Google Scholar 

  • Tunney, J.J. and Detellier, C. (1994) Preparation and characterization of two distinct ethylene glycol derivatives of kaolinite. Clays and Clay Minerals, 42, 552–560.

    Article  Google Scholar 

  • Tunney, J.J. and Detellier, C. (1996a) Aluminosilicate nanocomposite materials. Poly(ethylene glycol)-kaolinite intercalates. Chemistry of Materials, 8, 927–935.

    Article  Google Scholar 

  • Tunney, J.J. and Detellier, C. (1996b) Chemically modified kaolinite. Grafting of methoxy groups on the interlamellar aluminol surface of kaolinite. Journal of Materials Chemistry, 6, 1679–1685.

    Article  Google Scholar 

  • Tunney, J.J. and Detellier, C. (1997) Interlamellar amino functionalization of kaolinite. Canadian Journal of Chemistry, 75, 1766–1772.

    Article  Google Scholar 

  • Wang, C.Y., Sun, J., Liu, H.K., Dou, S.X., MacFarlane D., and Forsyth, M. (2005) Potential application of solid electrolyte P11OH in Ni/MH batteries. Synthetic Metals, 152, 57–60.

    Article  Google Scholar 

  • Winterton, N. (2006) Solubilization of polymers by ionic liquids. Journal of Materials Chemistry, 16, 4281–4293.

    Article  Google Scholar 

  • Yang, Z. and Pan, W. (2005) Ionic liquids: Green solvents for nonaqueous biocatalysis. Enzyme and Microbial Technology, 37, 19–28.

    Article  Google Scholar 

  • Yu, L., Garcia, D., Ren, R., and Xiangqun, Z. (2005) Ionic liquid high temperature gas sensors. Chemical Communications, 17, 2277–2279.

    Article  Google Scholar 

  • Zhou, Z.B., Matsumoto, H., and Tatsumi, K (2004) Low-melting, low-viscous, hydrophobic ionic liquids: N-alkyl(alkyl ether)-N-methylpyrrolidinium perfluoroethyltrifluoroborate. Chemistry Letters, 33, 1636–1637.

    Article  Google Scholar 

  • Zhou, Z.B., Matsumoto, H., and Tatsumi, K (2006) Cyclic quaternary ammonium ionic liquids with perfluoroalkyltri-fluoroborates: synthesis, characterization, and properties. Chemistry — A European Journal, 12, 2196–2212.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadok Letaief.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Letaief, S., Detellier, C. Ionic liquids-kaolinite nanostructured materials. Intercalation of pyrrolidinium salts. Clays Clay Miner. 56, 82–89 (2008). https://doi.org/10.1346/CCMN.2008.0560107

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2008.0560107

Key Words

Navigation