Skip to main content
Log in

Towards an isotopic modeling of the illitization process based on data of illite-type fundamental particles from mixed-layer illite-smectite

  • Published:
Clays and Clay Minerals

Abstract

Burial-induced and hydrothermal-related illitization in bentonites and in sandstones can be modeled on the basis of isotopic studies of fundamental particles separated from mixed-layer illitesmectite. The model envisages different reaction rates and durations relative to the varied impacts of temperature, considering that the water:rock ratio also has an influence. The different pathways for illitization are suggested on the basis of the K-Ar, Rb-Sr and δ18O compositions of previously studied materials.

New information is provided on why fundamental particles separated from mixed-layer illite-smectite in shales yield K-Ar age data that are systematically greater than the ages of the fundamental particles from associated bentonites and/or sandstones, and greater than the reported stratigraphic ages. The study of pure authigenic, recent to present-day smectite from Pacific sediments shows that (1) those collected from active hydrothermal vents have 40Ar/36Ar ratios identical to that of the atmosphere, and (2) those of mud sediments have 40Ar/36Ar ratios above the atmospheric value, indicating addition of 40Ar not generated in situ by radioactive decay. A preliminary but detailed analysis of the noble-gas (Ar, Xe, Kr) contents of authigenic smectite-rich size fractions from Pacific deep-sea red clays suggests trapping of these gases by smectite. Therefore, the results point to the fact that fundamental particles can incorporate excess 40Ar into their structure when nucleating in restricted to closed systems, such as shales. This excess 40Ar, which represents radiogenic 40Ar released from nearby altered silicates, might be temporarily adsorbed at the surface of the rock pore spaces and is therefore available for incorporation in nucleating and growing particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altaner, S.P., Whitney, G. and Aronson, J.L. (1984) Model for K-bentonite formation: Evidence from zoned K-bentonites in the disturbed beld, Montana. Geology, 12, 412–415.

    Article  Google Scholar 

  • Altaner, S.P. and Ylagan, R.F. (1997) Comparison of structural models of mixed-layer illite/smectite and reaction mechanisms of smectite illitization. Clays and Clay Minerals, 45, 517–533.

    Article  Google Scholar 

  • Aronson, J.L. and Hower, J. (1976) Mechanism of burial metamorphism of argillaceous sediments: 2. Radiogenic argon evidence. Geological Society of America Bulletin, 87, 738–743.

    Article  Google Scholar 

  • Berger, G., Lacharpagne, J.C., Velde, B., Beaufort, D. and Lanson, B. (1997) Kinetic constraints on illitization reactions and the effects of organic diagenesis in sandstone/shale sequences. Applied Geochemistry, 12, 23–35.

    Article  Google Scholar 

  • Bonhomme, M., Thuizat, R., Pinault, Y., Clauer, N., Wendling, R. and Winkler, R. (1975) Méthode de datation potassium-argon. Appareillage et technique. Note technique de l’Institut de Géologie, University of Strasbourg 3, France, 53 pp.

    Google Scholar 

  • Buatier, M., Honnorez, J. and Ehret, G. (1989) Fe-smectite-glauconite transition in hydrothermal green clays from the Galapagos spreading center. Clays and Clay Minerals, 37, 532–541.

    Article  Google Scholar 

  • Burley, S.D. and Flisch, M. (1989) K-Ar chronology and the origin of illite in the Piper and Tartan fields, Outer Moray Firth, U.K., North Sea. Clay Minerals, 24, 285–315.

    Article  Google Scholar 

  • Chaudhuri, S., Środoń, J. and Clauer, N. (1999) K-Ar dating of illitic fractions of Estonian ‘Blue Clay’ treated with alkylammonium cations. Clays and Clay Minerals, 47, 96–102.

    Article  Google Scholar 

  • Clauer, N. (1982) Strontium isotopes of Tertiary phillipsites from the southern Pacific: Timing of the geochemical evolution. Journal of Sedimentary Petrology, 52, 1003–1009.

    Google Scholar 

  • Clauer, N. and Chaudhuri, S. (1995) Clays in Crustal Environments. Isotope Dating and Tracing. Springer Verlag, Berlin, Heidelberg, 358 pp.

    Book  Google Scholar 

  • Clauer, N. and Chaudhuri, S. (1996) Inter-basinal comparison of the diagenetic evolution of illite/smectite minerals in buried shales on the basis of K-Ar systematics. Clays and Clay Minerals, 44, 818–824.

    Article  Google Scholar 

  • Clauer, N., Hoffert, M. and Karpoff, A.M. (1982) The Rb-Sr system as an index of origin and diagenetic evolution of southern Pacific red clays. Geochimica et Cosmochimica Acta, 46, 2659–2664.

    Article  Google Scholar 

  • Clauer, N., Cocker, J.D. and Chaudhuri, S. (1992) Isotopic dating of diagenetic illites in reservoir sandstones, Influence of the investigator effect. Pp. 5–12 in: Origin, Diagenesis and Petrophysics of Clay Minerals in Sandstones (D.W. Houseknecht and D. Edward, editors). SEPM Specical Publication 47, SEPM, Tulsa, Oklahoma, USA.

    Chapter  Google Scholar 

  • Clauer, N., Środoń, J., Franců, J. and Šuchá, V. (1997) K-Ar dating of illite fundamental particles separated from illite/smectite. Clay Minerals, 32, 181–196.

    Article  Google Scholar 

  • Clauer, N., Rinckenbach, T., Weber, F., Sommer, F., Chaudhuri, S. and O’Neil, J.R. (1999) Diagenetic evolution of clay minerals in oil-bearing Neogene sandstones and associated shales from Mahakam Delta Basin (Kalimantan, Indonesia). American Association of Petroleum Geology Bulletin, 83, 62–87.

    Google Scholar 

  • Clauer, N., Liewig, N., Pierret, M.C. and Toulkeridis, T. (2003) Crystallization conditions of fundamental particles from mixed-layer illite-smectite of bentonites based on isotopic data (K-Ar, Rb-Sr and δ18O). Clays and Clay Minerals, 51, 664–674.

    Article  Google Scholar 

  • Clauer, N., Rousset, D. and Środoń, J. (2004) Modeled shale and sandstone burial diagenesis based on the K-Ar systematics of illite-type fundamental particles. Clays and Clay Minerals, 52, 576–588.

    Article  Google Scholar 

  • Dunoyer de Segonzac, G. (1969) Les minéraux argileux dans la diagenèse. Passage au métamorphisme. Sciences Géologiques Mémoire, Strasbourg, 29, 320 pp.

  • Eberl, D.D. and Hower, J. (1976) Kinetics of illite formation. Geological Society of America Bulletin, 87, 1326–1330.

    Article  Google Scholar 

  • Eberl, D.D. and Środoń, J. (1988) Ostwald ripening and interparticle diffraction effects of illite crystals. American Mineralogist, 73, 1335–1345.

    Google Scholar 

  • Eberl, D.D., Drits, V.A. and Środoń, J. (1998) Deducing growth mechanisms for minerals from the shapes of crystal size distributions. American Journal of Science, 298, 499–533.

    Article  Google Scholar 

  • Ehrenberg, S.N. and Nadeau, P.H. (1989) Formation of diagenetic illite in sandstones of the Garn Formation, Haltenbanken area, Mid-Norwegian continental shelf. Clay Minerals, 24, 233–253.

    Article  Google Scholar 

  • Elliott, W.C. and Matisoff, G. (1996) Evaluation of kinetic models for the smectite to illite transformation. Clays and Clay Minerals, 44, 77–87.

    Article  Google Scholar 

  • Elliott, W.C., Aronson, J.L., Matisoff, G. and Gautier, D.L. (1991) Kinetics of the smectite to illite transformation in the Denver Basin; clay mineral, K-Ar data and mathematical model results. American Association of Petroleum Geology Bulletin, 75, 436–462.

    Google Scholar 

  • Gilg, H.A., Weber, B. and Kasbohm, J. and Frei, R. (2003) Isotope geochemistry and origin of illite-smectite and kaolinite from the Seilitz and Kemmlitz kaolin deposits, Saxony, Germany. Clay Minerals, 38, 95–112.

    Article  Google Scholar 

  • Glasmann, J.R., Larter, S., Briedis, N.A. and Lundegard, P.D. (1989a) Shale diagenesis in the Bergen High area, North Sea. Clays and Clay Minerals, 37, 97–112.

    Article  Google Scholar 

  • Glasmann, J.R., Lundegard, P.D., Clark, R.A., Penny, B.K. and Collins, I.D. (1989b) Geochemical evidence for the history of diagenesis and fluid migrations: Brent sandstones, Heather field, North Sea. Clay Minerals, 24, 255–284.

    Article  Google Scholar 

  • Hoffert, M., Karpoff, A.M., Clauer, N., Schaaf, A., Courtois, C. and Pautot, G. (1978) Néoformations et altérations dans trois faciès volcano-sédimentaires du Pacifique Sud. Oceanologica Acta, 1, 187–202.

    Google Scholar 

  • Honnorez, J., Von Herzen, R.P., Barret, T.J., Becker, K., Bender, M.L., Bender, P.E., Borella, P.E., Hubberten, H.W., Jones, S.C., Karato, S.I, Laverne, C., Levi, S., Migdisov, A.A., Moorby, S.A. and Schrader, E.L. (1981) Hydrothermal mounds and young ocean crust of the Galapagos: Preliminary Deep Sea Drilling results, leg 70. Geological Society of America Bulletin, 92, 457–472.

    Article  Google Scholar 

  • Honnorez, J., Karpoff, A.M. and Trauth-Badaut, D. (1983) Sedimentology, mineralogy and geochemistry of green clay samples from the Galapagos hydrothermal mounds, Hole 506, 506C and 507D Deep Sea Drilling Project Leg 70. Pp. 221–224 in: Report of the Deep Sea Drilling Project 70 (J. Honnorez, R.P. Von Herzen et al., editors). US Government Printing Office, Washington, D.C.

    Google Scholar 

  • Honty, M., Uhlík, P., Šuchá, V., Čaplovičá, M., Franců, J., Clauer, N. and Biron, A (2004) Smectite-to-illite alteration in salt-bearing bentonites (the East Slovak Basin). Clays and Clay Minerals, 52, 533–551.

    Article  Google Scholar 

  • Horseman, S.T., Cuss, R.J., Reeves, H.J., Noy, D., Clauer, N., Warr, L.N., Duplay, J., Cuisinier, O., Masrouri, F. and Liewig, N. (in press) Potential for self-healing of fractures in plastic clays and argillaceous rocks under repository conditions. Nuclear Energy Agency, NEA-CC-3- version 1.0 Draft, 351 pp.

  • Hower, J., Eslinger, E.V., Hower, M. and Perry, E.A. (1976) Mechanism of burial metamorphism of argillaceous sediments: 1. Mineralogical and chemical evidence. Geological Society of America Bulletin, 87, 725–737.

    Article  Google Scholar 

  • Huang, W.L., Longo, J.M. and Pevear, D.R. (1993) An experimentally derived kinetic model for smectite-to-illite conversion and its use as a geothermometer. Clays and Clay Minerals, 41, 162–177.

    Article  Google Scholar 

  • Hurley, P.M., Cormier, R.F., Hower, J., Fairbairn, H.W. and Pinson, W.H. (1960) Reliability of glauconite for age measurements by K-Ar and Rb-Sr methods. American Association of Petroleum Geology Bulletin, 4/1, 793–808.

    Google Scholar 

  • Inoue, A., Kohyama, N. and Kitagawa, R. (1987) Chemical and morphological evidence for the conversion of smectite to illite. Clays and Clay Minerals, 35, 111–120.

    Article  Google Scholar 

  • Jennings, S. and Thompson, G.R. (1986) Diagenesis of Plio-Pleistocene sediments of the Colorado River delta, southern California. Journal of Sedimentary Petrology, 56, 89–98.

    Google Scholar 

  • Kübler, B. (1997) Concomitant alteration of clay minerals and organic matter during burial diagenesis. Pp. 327–362 in: Soils and Sediments (H. Paquet and N. Clauer, editors). Springer Verlag, Berlin.

    Chapter  Google Scholar 

  • Lerman, A. and Clauer, N. (2005) Losses of radiogenic 40Ar in the fine-clay size fractions of sediments. Clays and Clay Minerals, 53, 233–248.

    Article  Google Scholar 

  • Mossmann, J.R. (1991) K-Ar dating of authigenic illite-smectite clay material: application to complex mixtures of mixed-layer assemblages. Clay Minerals, 26, 189–198.

    Article  Google Scholar 

  • Nadeau, P.H., Wilson, M.J., McHardy, W.J. and Tait, J.M. (1984) Interstratified clays as fundamental particles. Science, 225, 923–925.

    Article  Google Scholar 

  • Nier, A.O. (1950) A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon and potassium. Physics Review, 77, 789–793.

    Article  Google Scholar 

  • Ozima, M. and Podosek, F.A. (2002) Noble Gas Geochemistry, 2nd edition. Cambridge University Press, Cambridge, UK, 286 pp.

    Google Scholar 

  • Pevear, D.R. (1992) Illite age analysis: A new tool for basin thermal history analysis. Pp. 1251–1254 in: Proceedings of the 7th International Symposium on Water-Rock Interactions, (Y.K. Kharaka and A.S. editors) Park City, Utah, USA.

  • Pollastro, R.M. (1993) Considerations and applications of the illite/smectite geothermometer in hydrocarbon-bearing rocks of Miocene to Mississippian age. Clays and Clay Minerals, 41, 119–133.

    Article  Google Scholar 

  • Porcelli, D.P., Ballentine, C.J. and Wieler, R. (editors) (2002) Noble Gases. Reviews in Mineralogy and and Geochemistry, 47, Mineralogical Society of America, and the Geochemical Society, Washington, D.C., 844 pp.

    Google Scholar 

  • Pytte, A. and Reynolds, R.C. Jr. (1988) The thermal transformation of smectite to illite. Pp. 133–140 in: Thermal History of Sedimentary Basins (N.D. Naeser and T.H. McCulloh, editors). Springer Verlag, Berlin.

    Google Scholar 

  • Rousset, D. and Clauer, N. (2003) Discrete clay diagenesis in a very low-permeable sequence constrained by an isotopic (K-Ar and Rb-Sr) study. Contributions to Mineralogy and Petrology, 145, 182–198.

    Article  Google Scholar 

  • Schultz, L., Weber, H.W. and Begemann, F. (1991) Noble gases in H-chondrites and potential differences between Antarctic and non-Antarctic meteorites. Geochimca et Cosmochimica Acta, 55, 59–66.

    Article  Google Scholar 

  • Środoń, J. (1995) Reconstruction of maximum paleotemperatures at present erosional surface of the Upper Silesia Basin, based on the composition of illite/smectite in shales. Studia Geologica Polonica, 108, 9–20.

    Google Scholar 

  • Srodon, J. and Clauer, N. (2001) Diagenetic history of Lower Palaeozoic sediments in Pomerania (northern Poland) traced across the Teisseyre-Tornquist tectonic zone using mixed-layer illite-smectite. Clay Minerals, 36, 15–27.

    Article  Google Scholar 

  • Šuchá, V., Kraus, I., Gerthofferova, H., Petes, J. and Serekova, M. (1993) Smectite to illite conversion in bentonites and shales of the East Slovak Basin. Clay Minerals, 28, 43–53.

    Article  Google Scholar 

  • Velde, B. (1985) Clay Minerals. A Physico-chemical Explanation of their Occurrence. Developments in Sedimentology, 21, Elsevier, Amsterdam, 218 pp.

    Google Scholar 

  • Whitney, G. and Velde, B. (1993) Changes in particle morphology during illitization — an experimental study. Clays and Clay Minerals, 41, 209–218.

    Article  Google Scholar 

  • Williams, D.L., Von Herzen, R.P., Sclate, J.G. and Anderson, R.N. (1974) The Galapagos Spreading Center: Lithospheric cooling and hydrothermal circulation. Journal of the Royal Astronomical Society, 38, 587–608.

    Article  Google Scholar 

  • Wilkinson, M. and Haszeldine, R.S. (2002) Fibrous illite in oilfield sandstones — a nucleation kinetic theory of growth. Terra Nova, 14, 56–60.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Clauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clauer, N. Towards an isotopic modeling of the illitization process based on data of illite-type fundamental particles from mixed-layer illite-smectite. Clays Clay Miner. 54, 116–127 (2006). https://doi.org/10.1346/CCMN.2006.0540113

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2006.0540113

Key Words

Navigation