Skip to main content
Log in

Origin of Clay Minerals in Soils on Pyroclastic Deposits in the Island of Lipari (Italy)

  • Published:
Clays and Clay Minerals

Abstract

The island of Lipari (Italy) is characterized by calc-alkaline to potassic volcanism and a Mediterranean-type climate. The mineralogical and chemical features of two different soil profiles with ages of 92,000 and 10,000–40,000 y, respectively, have been investigated. There were no Andisols, but Vitric and Vertic Cambisols have developed at both sites. Although the morphology of the soils was similar, remarkable differences in the clay mineralogy between the two sites were observed. The site with the Vitric Cambisol was associated with the weathering sequence: glass → halloysite → kaolinite or interstratified kaolinite-2:1 clay minerals. Both sites had smectite in the clay fraction and, to a large extent, this smectite had a low charge and could be characterized as a dioctahedral montmorillonite. At the site with a Vertic Cambisol, smectite was the predominant mineral phase in the clay fraction. The smectites (predominantly montmorillonite) found in this soil were probably not of pedogenetic origin and are, therefore, inherited from the parent material. Their formation is due to hydrothermal alteration of glass particles during or immediately after the emplacement of the pyroclastic flow. The octahedral character of the smectites did not change from the C to the A horizon indicating that they are resistant to weathering processes. A high-charge expandable mineral was detected in small concentrations in the Vertic Cambisol and had a dioctahedral structure. In this case also, no signs of significant weathering or transformation could be detected in the soil profile. In contrast to many other investigations, no active smectite formation within the soil profiles could be measured. The subtropical and rather dry climate in Lipari might, therefore, favor the persistence of dioctahedral low-charge montmorillonites that are associated with a small amount of a high-charge expandable mineral in the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altaner, S.P., Ylagan, R.F., Savin, S.M., Aronson, J.L., Belkin, H.E. and Pozzuoli, A. (2003) Geothermometry, geochronology, and mass transfer associated with hydrothermal alteration of a rhyolitic hyaloclastite from Ponza Island, Italy. Geochimica et Cosmochimica Acta, 67, 275–288.

    Article  Google Scholar 

  • Bischoff, J.L. (1972) A ferroan nontronite from the Red Sea geothermal system. Clays and Clay Minerals, 20, 217–223.

    Article  Google Scholar 

  • Blakemore, L.C., Searle, P.L. and Daly, B.K., (1981) Soil bureau laboratory methods. A: Methods for chemical analysis of soils. New Zealand Soil Bureau Scientific Report 10A, CSIRO, Lower Hutt, New Zealand.

    Google Scholar 

  • Borchardt, G. (1989) Smectites. Pp. 675–727 in: Minerals in Soil Environments (J.B. Dixon and S.B. Weed, editors). Soil Science Society of America Book Series, Madison, Wisconsin.

    Google Scholar 

  • Boulet, R., Lucas, Y., Fritsch, E. and Paquet, H. (1997) Geochemical processes in tropical landscapes: role of the soil covers. Pp 67–96 in: Soils and Sediments: Mineralogy and Geochemistry (H. Paquet and N. Clauer, editors). Springer Verlag, Berlin.

    Chapter  Google Scholar 

  • Calanchi, N., Luigi Rossi, P., Sanmarchi, F. and Tranne A. (1996) Guida escursionistica vulcanologia delle isole Eolie. Centro studi e ricerche di storia e prohlemi eoliani. Union Printing S.p.A., Viterho p. 213.

    Google Scholar 

  • Chichester, F.W., Youngherg, C.T. and Harward, M.E. (1969) Clay mineralogy of soils formed on Mazama pumice. Soil Science Society of America Proceedings, 33, 115–125.

    Article  Google Scholar 

  • Cortes, A. and Franzmeier, D.P. (1972) Climosequence of ashderived soils in the central cordillera of Colombia. Soil Science Society of America Proceedings, 26, 653–659.

    Article  Google Scholar 

  • Craig, D.C. and Loughman, F.C. (1964) Chemical and mineralogical transformations accompanying the weathering of basic volcanic rocks from New South Wales. Australian Journal of Soil Research, 2, 218–234.

    Article  Google Scholar 

  • Crisci, G.M., De Rosa, R., Lanzafame, G., Mazzuoli, R., Sheridan, M.F. and Zuffa, G.G. (1981) Monte Guardia sequence: a late-Pleistocene eruptive cycle on Lipari (Italy). Bulletin of Volcanology, 44, 241–255.

    Article  Google Scholar 

  • Crisci, G.M., Delibrias, G., De Rosa, R., Mazzuoli, R. and Sheridan, M.F. (1983) Age and petrology of the late-Pleistocene Brown Tuffs on Lipari, Italy. Bulletin of Volcanology, 46, 381–391.

    Article  Google Scholar 

  • Cuadros, J., Caballero, E., Huertas, F.J., De Cisneros, C.J., Huertas, F. and Linares, J. (1999) Experimental alteration of volcanic tuff: smectite formation and effect on 18O isotope composition. Clays and Clay Minerals, 47, 769–776.

    Article  Google Scholar 

  • Dahlgren, R., Shoji, S. and Nanzyo, M. (1993) Mineralogical characteristics of volcanic ash soils. Pp. 101–143 in: Volcanic Ash Soils. Genesis, Properties and Utilization (S. Shoji, M. Nanzyo and R. Dahlgren, editors). Developments in Soil Science 21, Elsevier Science Publishers, Amsterdam, The Netherlands.

    Chapter  Google Scholar 

  • De La Fuente, S., Cuadros, J., Fiore, S. and Linares, J. (2000) Electron microscopy study of volcanic tuff alteration to illite-smectite under hydrothermal conditions. Clays and Clay Minerals, 48, 339–350.

    Article  Google Scholar 

  • Dixon, J.B. (1989) Kaolin and Serpentine Group Minerals. Pp. 467–525 in: Minerals in Soil Environments (J.B. Dixon and S.B. Weed, editors). Soil Science Society of America Book Series, Madison, Wisconsin.

    Google Scholar 

  • Egli, M., Mirabella, A. and Fitze, P. (2001) Clay mineral formation in soils of two different chronosequences in the Swiss Alps. Geoderma, 104, 145–175.

    Article  Google Scholar 

  • Fiore, S. (1993) The occurrences of smectite and illite in a pyroclastic deposit prior to weathering: implications on the genesis of 2:1 clay minerals in volcanic soils. Applied Clay Science, 8, 249–259.

    Article  Google Scholar 

  • Fiore, S., Genovese, G. and Miano, T.M. (1996) Organic matter migration and halloysite formation in pyroclastic deposits from Mt. Vulture (southern Italy). Pp. 108–109 in: Advances in Clay Minerals (M. Ortega-Huertas, A. López-Galindo and I. Palomo-Delgado, editors). University of Granada, Spain.

    Google Scholar 

  • Fiore, S., Huertas, F.J., Tazaki, K., Huertas, F. and Linares, J. (1999) A low temperature experimental alteration of a rhyolitic obsidian. European Journal of Mineralogy, 11, 1–5.

    Article  Google Scholar 

  • Fitze, P., Kägi, B. and Egli, M. (2000) Laboranleitung zur Untersuchung von Boden und Wasser. Geographisches Institut der Universität Zürich, Zürich, Switzerland.

    Google Scholar 

  • Frank, D. (1983) Origin, distribution, and rapid removal of hydrothermally formed clay at Mount Baker, Washington. Geological Survey Professional Paper 1022-E, pp. 1–31.

    Google Scholar 

  • Frost, R.L., Lack, D.A., Paroz, G.N. and Tran, T.H.T. (1999) New techniques for studying the intercalation of kaolinites from Georgia with formamide. Clays and Clay Minerals, 47, 297–303.

    Article  Google Scholar 

  • Glassmann, J.R. (1982) Alteration of andesite in wet, unstable soils of Oregon’s western Cascades. Clays and Clay Minerals, 30, 253–263.

    Article  Google Scholar 

  • Greene-Kelly, R. (1953) The identification of montmorillonoids in clays. Journal of Soil Science, 4, 233–237.

    Article  Google Scholar 

  • Hay, R.L. (1960) Rate of formation and mineral alteration in a 4000-year-old ash soil of St. Vincent. American Journal of Science, 258, 354–368.

    Article  Google Scholar 

  • Inoue, A. and Utada, M. (1983) Further investigations of a conversion series of dioctahedral mica/smectites in the Shinzan hydrothermal alteration area, Northeast Japan. Clays and Clay Minerals, 31, 401–412.

    Article  Google Scholar 

  • Jenny, H. (1980) The Soil Resource. Springer, New York.

    Book  Google Scholar 

  • Lanson, B. (1997) Decomposition of experimental X-ray diffraction patterns (profile fitting): a convenient way to study clay minerals. Clays and Clay Minerals, 45, 132–146.

    Article  Google Scholar 

  • McIntosh, P.D. (1979) Halloysite in a New Zealand tephra and paleosol less than 2500 years old. New Zealand Journal of Science, 22, 49–54.

    Google Scholar 

  • Minato, H., Kusakabe, H. and Inoue, A. (1982) Alteration reactions of halloysite under hydrothermal conditions with acidic solutions. Pp. 565–572 in: Proceedings of the International Clay Conference 1981 (H. van Olphen and F. Veniale, editors). Elsevier, New York.

    Google Scholar 

  • Mizota, C. and Faure, K. (1998) Hydrothermal origin of smectite in volcanic ash. Clays and Clay Minerals, 46, 178–182.

    Article  Google Scholar 

  • Moore, D.M. and Reynolds, R.C. (1997) X-ray diffraction and the Identification and Analysis of Clay Minerals, 2nd edition. Oxford University Press, New York.

    Google Scholar 

  • Ndayiragije, S. and Delvaux, B. (2004) Selective sorption of potassium in a weathering sequence of volcanic ash soils from Guadeloupe, French West Indies. Catena, 56, 185–198.

    Article  Google Scholar 

  • Olis, A.C., Malla, P.B. and Douglas, L.A. (1990) The rapid estimation of the layer charges of 2:1 expanding clays from a single alkylammonium ion expansion. Clay Minerals, 25, 39–50.

    Article  Google Scholar 

  • Paquet, H. (1970) Evolution géochimique des minéreaux argileux das les altérations et des sols des climats méditerranéens tropicaux à saisons contrastées. Thèse, Université de Strasbourg, Memoires de la Service Carte Geologique Alsace Lorraine, Strasbourg, France.

    Google Scholar 

  • Paquet, H. and Ruellan, A. (1993) Epigenie des encroûtement calcaires (calcrètes). Pp. 19–39 in: Coll. ‘Sédimentologie et Géochimie de la Surface’ à la Mémoire de Georges Millot (N. Clauer and H. Paquet, editors). Elsevier, Amsterdam.

    Google Scholar 

  • Parfitt, R.L. and Henmi, T. (1982) Comparison of an oxalate-extraction method and an infrared spectroscopic method for determining allophane in soil clays. Soil Science and Plant Nutrition, 28, 183–190.

    Article  Google Scholar 

  • Parfitt, R.L., Russel, M. and Orbell, G.E. (1983) Weathering sequence of soils from volcanic ash involving allophane and halloysite, New Zealand. Geoderma, 29, 41–57.

    Article  Google Scholar 

  • Pevear, D.R., Dethier, D.P. and Frank, D. (1982) Clay minerals in the 1980 deposits from Mount St. Helens. Clays and Clay Minerals, 30, 241–252.

    Article  Google Scholar 

  • Prudêncio, M.I., Sequeira Braga, M.A., Paquet, H., Waerenborgh, J.C., Pereira, L.C.J. and Gouveia, M.A. (2002) Clay mineral assemblages in weathered basalt profiles from central and southern Portugal: climatic significance. Catena, 49, 77–89.

    Article  Google Scholar 

  • Quantin, P. (1990) Specificity of the halloysite-rich tropical or subtropical soils. Transactions, 14thInternational Congress of Soil Science, Kyoto, 1990, VII, pp. 16–21.

    Google Scholar 

  • Raimondi, S., Lupo, M. and Tusa, D. (1999) II clima ed il pedoclima dei suoli vulcanici dell’Etna. Sicilia Foreste VI, 23/24, 2–7.

    Google Scholar 

  • Raimondi, S., Poma, I. and Frenda, A.S. (1997) II pedoclima come fattore di sensibilità ambientale: esempio di metodologia applicata all’agro di Sparacia — Cammarata (AG). Rivista di Agronomia, XXXI, 726–733.

    Google Scholar 

  • Schwertmann, U. (1964) Differenzierung der Eisenoxide des Bodens durch Extraction mit Ammoniumoxalat Lösung. Zeitschrift Pfianzenernährung Düng Bodenkunde, 105, 195–202.

    Google Scholar 

  • Shoji, S., Nanzyo, M. and Dahlgren, R.A. (1993) Volcanic Ash Soils. Genesis, Properties and Utilization. Developments in Soil Science, 21. Elsevier, Amsterdam.

    Google Scholar 

  • Shoval, S. (2004) Deposition of volcanogenic smectite along the southeastern Neo-Tethys margin during the oceanic convergence stage. Applied Clay Science, 24, 299–311.

    Article  Google Scholar 

  • Singer, A., Zarei, M., Lange, F.M. and Stahr, K. (2004) Halloysite characteristics and formation in the northern Golan Heights. Geoderma, 123, 279–295.

    Article  Google Scholar 

  • Soil Conservation Service (1972) Determination of free iron oxides. Pp. 311–312 in: Methods of Soil Analysis (C.A. Black, editor). American Society of Agronomy, Madison, Wisconsin.

    Google Scholar 

  • Soil Survey Staff (2003) Keys to Soil Taxonomy, ninth edition. United States Department of Agriculture.

    Google Scholar 

  • Thomthwaite, C.W. and Mather, J.R. (1957) Instructions and tables for computing potential evapotranspiration and the water balance. Climatology, 10, 181–311.

    Google Scholar 

  • Ugolini, F.C. and Dahlgren, R.A. (2003) Soil development in volcanic ash. Global Environmental Research, 6, 69–81.

    Google Scholar 

  • Velde, B. (1992) Introduction to Clay Minerals. Chemistry, Origins, Uses and Environmental Significance. Chapman & Hall, London.

    Book  Google Scholar 

  • Vidales, J.L.M., Sanz, J.L., Guijarro, J., Hoyos, M.A. and Casas, J. (1985) Smectite origins in the volcanic soils of the Calatrava region (central Spain). 5thMeeting of the European Clay Groups, Prague, pp. 465–470.

    Google Scholar 

  • Vizcaíno, C., García Gonzales, M.Z. and García Vicente, J. (1979) Suelos vulcánicos españoles. Anales Edafologia Agrobiologia, XXXVIII, 431–445.

    Google Scholar 

  • Wada, K. (1961) Lattice expansion of kaolin minerals by treatment with potassium acetate. American Mineralogist, 46, 78–91.

    Google Scholar 

  • Wilson, M.J. (1987) Soil smectites and related interstratified minerals: Recent developments. Pp. 167–173 in: Proceedings of the International Clay Conference 1985 (L.G. Schultz, H. van Olphen and F.A. Mumpton, editors). The Clay Minerals Society, Boulder, Colorado.

    Google Scholar 

  • WRB (1998) World Reference Base for Soil Resources. World Soil Resources Reports 84, FAO, Rome.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mirabella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirabella, A., Egli, M., Raimondi, S. et al. Origin of Clay Minerals in Soils on Pyroclastic Deposits in the Island of Lipari (Italy). Clays Clay Miner. 53, 409–421 (2005). https://doi.org/10.1346/CCMN.2005.0530409

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2005.0530409

Key Words

Navigation