Skip to main content
Log in

Surface enthalpy of goethite

  • Published:
Clays and Clay Minerals

Abstract

High-temperature oxide-melt solution calorimetry and acid-solution calorimetry were used to determine the heat of dissolution of synthetic goethite with particle sizes in the range 2–75 nm and measured surface areas of 30–273 m2/g (27–240 × 103 m2/mol). Sample characterization was performed using X-ray diffraction, Fourier transform infrared spectroscopy, the Brunauer, Emmett and Teller method and thermogravimetric analysis. Water content (structural plus excess water) was determined from weight loss after firing at 1100°C. Calorimetric data were corrected for excess water assuming this loosely adsorbed water has the same energetics as bulk liquid water. The enthalpy of formation was calculated from calorimetric data using enthalpies of formation of hematite and liquid water as reference phases for high-temperature oxide-melt calorimetry and using enthalpy of formation of lepidocrocite for acid-solution calorimetry. The enthalpy of formation of goethite can vary by 15–20 kJ/mol as a function of surface area. The plot of calorimetric data vs. surface area gives a surface enthalpy of 0.60±0.10 J/m2 and enthalpy of formation of goethite (with nominal composition FeOOH and surface area = 0) of −561.5±1.5 kJ/mol. This surface enthalpy of goethite, which is lower than values reported previously, clarifies previous inconsistencies between goethite-hematite equilibrium thermodynamics and observations in natural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barany, R. (1965) Heats of formation of goethite, ferrous vanadate and manganese molybdate. US Department of the Interior, Bureau of Mines, Report of Investigation 6618.

  • Brunauer, S., Emmett, P.H. and Teller, E. (1938) Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309–319.

    Article  Google Scholar 

  • Cohen, D.R., Shen, X.C., Dunlop, A.C. and Rutherford, N.F. (1998) A comparison of selective extraction soil geochemistry and biogeochemistry in the Cobar area, New South Wales. Journal of Geochemical Exploration, 61, 367–370.

    Article  Google Scholar 

  • Cornell, R.M. and Schwertmann, U. (1996) The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses. VCH, Germany, 573 pp.

    Google Scholar 

  • Crespo, M.T., del Villar, L.P., Quejido, A.J., Sánchez, M., Cózar, J.S. and Fernández-Díaz, M. (2003) U-series in FeU-rich fracture fillings from the oxidised cap of the ‘Mina Fe’ uranium deposit (Spain): implications for processes in a radwaste repository. Applied Geochemistry, 18, 1251–1266.

    Article  Google Scholar 

  • Diakonov, I., Khodakovsky, I., Schott, J. and Sergeeva, E. (1994) Thermodynamic properties of iron oxides and hydroxides. I. Surface and bulk thermodynamic properties of goethite (α-FeOOH) up to 500 K. European Journal of Mineralogy, 6, 967–983.

    Article  Google Scholar 

  • Dixon, J.B. (1991) Roles of clays in soils. Applied Clay Science, 5, 489–500.

    Article  Google Scholar 

  • Duff, M.C., Coughlin, J.U. and Hunter, D.B. (2002) Uranium co-precipitation with iron oxide minerals. Geochimica et Cosmochimica Acta, 66, 3533–3547.

    Article  Google Scholar 

  • Ferrier, A. (1966) Influence de l’état de division de la goethite et de l’oxyde ferrique sur leurs chaleurs de réaction. Revue de Chimie minérale, 3, 587.

    Google Scholar 

  • Hiemstra, T. and Van Riemsdijk, W.H. (1996) A surface structural approach to ion adsorption: the charge distribution (CD) model. Journal of Colloid and Interface Science, 179, 488–508.

    Article  Google Scholar 

  • Kaiser, K. (2003) Sorption of natural organic matter fractions to goethite (α-FeOOH): effect of chemical composition as revealed by liquid-state 13C NMR and wet-chemical analysis. Organic Geochemistry, 34, 1569–1579.

    Article  Google Scholar 

  • Kosmulski, M. and Maczka, E. (2004) Dilatometric study of the adsorption of heavy-metal cations on goethite. Langmuir, 20, 2320–2323.

    Article  Google Scholar 

  • Kosmulski, M., Saneluta, S. and Maczka, E. (2003) Electrokinetic study of specific adsorption of cations on synthetic goethite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 222, 119–124.

    Article  Google Scholar 

  • Langmuir, D. (1971) Particle size effect on the reaction goethite = hematite + water. American Journal of Science, 277, 788–791.

    Google Scholar 

  • Lehmann, M., Zouboulis, A.I. and Matis, K.A. (2001) Modeling the sorption of metals from aqueous solutions on goethite fixed-beds. Environmental Pollution, 113, 121–128.

    Article  Google Scholar 

  • Li, P., Miser, D.E., Rabiei, S., Yadav, R.T. and Hajaligol, M.R. (2003) The removal of carbon monoxide by iron oxide nanoparticles. Applied Catalysis B: Environmental, 43, 151–162.

    Article  Google Scholar 

  • Lower, S.K., Tadanier, C.J. and Hochella, M.F. (2000) Measuring interfacial and adhesion forces between bacteria and mineral surfaces with biological force microscopy. Geochimica et Cosmochimica Acta, 64, 3133–3139.

    Article  Google Scholar 

  • Lützenkirchen, B.J., Balmès, O., Beattie, J. and Sjöberg, S. (2001) Modeling proton binding at the goethite (α-FeOOH)–water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 179, 11–27.

    Article  Google Scholar 

  • Majzlan, J. (2002) Thermodynamics of iron and aluminum oxides. PhD dissertation, University of California at Davis, Davis, CA, USA.

    Google Scholar 

  • Majzlan, J., Navrotsky, A. and Casey, W.H. (2000) Surface enthalpy of boehmite. Clays and Clay Minerals, 48, 699–707.

    Article  Google Scholar 

  • Majzlan, J., Grevel, K.D. and Navrotsky, A. (2003) Thermodynamics of iron oxides. II. Enthalpies of formation and relative stability of goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and maghemite (γ-Fe2O3). American Mineralogist, 88, 855–859.

    Article  Google Scholar 

  • Majzlan, J., Navrotsky, A. and Schwertmann, U. (2004) Thermodynamics of iron oxides: Part III. Enthalpies of formation and stability of ferrihydrite (∼Fe(OH)3), schwertmannite (∼FeO(OH)3/4(SO4)1/8), and ε-Fe2O3. Geochimica et Cosmochimica Acta, 68, 1049–1059.

    Article  Google Scholar 

  • Manceau, A. and Charlet, L. (1994) The mechanism of selenate adsorption on goethite and hydrous ferric oxide. Journal of Colloid and Interface Science, 168, 87–93.

    Article  Google Scholar 

  • McHale, J.M., Auroux, A., Perrota, A.J. and Navrotsky, A. (1997a) Surface energetics and thermodynamic phase stability in nanocrystalline aluminas. Science, 277, 788–791.

    Article  Google Scholar 

  • McHale, J.M., Navrotsky, A. and Perrotta, A.J. (1997b) Effects of increased surface area and chemisorbed H2O on the relative stability of nanocrystalline γ-Al2O3 and α-Al2O3. Journal of Physical Chemistry, 101, 603–613.

    Article  Google Scholar 

  • Navrotsky, A. (1997) Progress and new directions in high temperature calorimetry: revisited. Physics and Chemistry of Minerals, 24, 222–241.

    Article  Google Scholar 

  • Navrotsky, A. (2003) Energetics of nanoparticle oxides: interplay between surface energy and polymorphism. Geochemical Transactions, 4, 34–37.

    Article  Google Scholar 

  • Navrotsky, A. (2004) Environmental nanoparticles. Pp. 1147–1155 in: Dekker Encyclopedia of Nanoscience and Nanotechnology (J.A. Schwartz-Christian and C.-K. Putyera, editors). Marcel Dekker, New York.

    Google Scholar 

  • Navrotsky, A., Rapp, R.P., Smelik, E., Burnley, P., Circone, S., Chai, L. and Bose, K. (1994) The behavior of H2O and CO2 in high-temperature lead borate solution calorimetry of volatile-bearing phases. American Mineralogist, 79, 1099–1109.

    Google Scholar 

  • Ottley, C.J., Davison, W. and Edmunds, W.M. (1997) Chemical catalysis of nitrate reduction by iron (II). Geochimica et Cosmochimica Acta, 61, 1819–1828.

    Article  Google Scholar 

  • Pitcher, M.W., Ushakov, S.V., Navrotsky, A., Woodfield, B.F., Li, G., Boerio-Goates, J. and Tissue B.M. (2005) Energy crossovers in nanocrystalline zirconia. Journal of the American Ceramic Society, 88, 160–167.

    Article  Google Scholar 

  • Ranade, M.R., Navrotsky, A., Zhang, H.Z., Banfield, J.F., Elder, S.H., Zaban, A., Borse, P.H., Kulkarni, S.K., Doran, G.S. and Whitfield H.J. (2002) Energetics of nanocrystalline TiO2. Proceedings of the National Academy of Science, 99, 6476–6481.

    Article  Google Scholar 

  • Robie, R.A. and Hemingway, B.S. (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) and at higher temperatures. US Geological Survey Bulletin, 2131, 461 pp.

  • Schwertmann, U. and Cornell, R.M. (2000) The Iron Oxides in the Laboratory: Preparation and Characterization. VCH, New York.

    Book  Google Scholar 

  • Sudakar, C., Subbanna, G.N. and Kutty, T.R.N. (2003) Effect of anions on the phase stability of γ-FeOOH nanoparticles and the magnetic properties of gamma-ferric oxide derived from lepidocrocite. Journal of Physics and Chemistry of Solids, 64, 2337–2349.

    Article  Google Scholar 

  • Von Gunten, H.R., Roessler, E., Lowson, R.T., Reid, P.D. and Short, S.A. (1999) Distribution of uranium- and thorium series radionuclides in mineral phases of a weathered lateritic transect of a uranium ore body. Chemical Geology, 160, 225–240.

    Article  Google Scholar 

  • Zar, J.H. (1974) Biostatistical Analysis. Prentice-Hall, Inc, Englewood Cliffs, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Navrotsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazeina, L., Navrotsky, A. Surface enthalpy of goethite. Clays Clay Miner. 53, 113–122 (2005). https://doi.org/10.1346/CCMN.2005.0530201

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2005.0530201

Key Words

Navigation