Skip to main content
Log in

Synthesis of a Mg2+-Al3+-SO 2−4 -Hydrotalcite-Type Compound from the acid Wastewaters of the Aluminum-Anodizing Industry

  • Published:
Clays and Clay Minerals

Abstract

The synthesis of a Mg2+-Al3+-SO2−4-hydrotalcite-type compound from the acid wastewaters of the aluminum-anodizing industry has been studied as a possible means of recovering the unused Al resource materials as a useful mineral. The synthesis has been carried out from wastewaters of different concentrations (from 6.7 g Al/L to 134 mg Al/L) using the method of precipitation at constant pH, proving that all of them are suitable for such a process. The mineral was characterized using X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, differential thermal analysis and chemical analysis, all of which indicated characteristics typical of the desired compound. Almost 100% of the Al initially present in the wastewater solutions is recovered in the form of the Mg2+-Al3+-SO 2−4 -hydrotalcite-type compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allmann, R. (1968) The crystal structure of pyroaurite. Acta Crystallographies B24, 972–977.

    Article  Google Scholar 

  • Allmann, R. (1970) Doppelscichtchtstrukturen mit brucitahnlichen schichtionen [Me(II)1-xMe(III)x(OH)2]x+. Chimia, 24, 99–108.

    Google Scholar 

  • BAT Reference Document (2002) Surface treatment of metals anaplastic materials using electrolytic or chemical process. European Committee for Surface Treatment, European IPPC Bureau.

    Google Scholar 

  • Bish, D.L. (1980) Anion-exchange in takovite: applications to other hydroxide minerals. Bulletin de Mineralogie, 103, 170–175.

    Google Scholar 

  • Brindley, G.W. and Kikkawa, S. (1980) Thermal behavior of hydrotalcite and of anion-exchanged forms of hydrotalcite. Clays and Clay Minerals, 28, 87–91.

    Article  Google Scholar 

  • Cavani, F., Trifirò, F. and Vaccari, A. (1991) Hydrotalcite-type anionic clays: Preparation, properties and applications. Catalysis Today, 11, 173–301.

    Article  Google Scholar 

  • Chia, P.S.K., Lindoy, L.F. and Livingstone, S.E. (1968) Metal chelates of α-diimines containing a benzothiazole moiety. III. Infrared, thermogravimetric, and magnetic investigations of some sulphate complexes. Inorganica Chimica Acta, 2, 454–458.

    Article  Google Scholar 

  • Courty, Ph., Durand, D., Freund, E. and Sugier, A. (1982) C1- C6 alcohols from synthesis gas on copper-cobalt catalysts. Journal of Molecular Catalysis, 17, 241–254.

    Article  Google Scholar 

  • de Roy, A., Forano, C., El Malki, K. and Besse, J.P. (1992) Synthesis of microporous materials. Pp. 108–169 in: Expanded Clays and other Microporous Systems (M.L. Occelli and H.E. Robson, editors). Van Nostrand Reinhold, New York.

  • Dufour, J., La Iglesia, A., Gonzalez, V. and Ruiz-Sierra, J.C. (1997) Viability of the use of pickling baths from aluminium surface treatment for synthesizing low Si/Al zeolites. Journal of Environmental Science and Health - Part A -Toxic Hazardous Substances, 32, 1807–1825.

    Google Scholar 

  • Dufour, J., Gonzalez, V. and La Iglesia, A. (2001a) Optimization of 4A zeolite synthesis as recovery of wastes from aluminum finishing. Journal of Environmental Science and Health - Part A - Toxic Hazardous Substances, 36, 1257–1269.

    Article  Google Scholar 

  • Dufour, J., Gonzalez, V. and La Iglesia, A. (2001b) Synthesis of 13X zeolite from alkaline waste streams in the aluminum anodizing industry. Industrial and Engineering Chemistry Research, 40, 1140–1145.

    Article  Google Scholar 

  • Dumitriu, E., Hulea, V., Chelaru, C., Catrinescu, C., Tichit, D. and Durand, R. (1999) Influence of the acid-base properties of solid catalysts derived from hydrotalcite-like compounds on the condensation of formaldehyde and acetaldehyde. Applied Catalysis A: General, 178, 145–157.

    Article  Google Scholar 

  • Eskenazi, R., Raskovan, J. and Levitus, R. (1966) Sulphate complexes of palladium (II). Journal of Inorganic and Nuclear Chemistry, 28, 521–526.

    Article  Google Scholar 

  • Hernández, M.J., Ulibarri, M.A., Rendón, J.L. and Serna, C.J. (1984) Thermal stability of Ni, Al double hydroxides with various interlayer anions. Thermochimica Acta, 81, 311–318.

    Article  Google Scholar 

  • Huheey, J.E. (1978) Inorganic Chemistry: Principles of Structure and Reactivity. Harper & Row Publishers Inc., New York.

    Google Scholar 

  • Kovanda, F., Kolousek, D., Kalouskova, R. and Vymazal, Z. (2001) Starting production of synthetic hydrotalcite in the Czech Republic. Chemicke Listy, 95, 493–497.

    Google Scholar 

  • La Iglesia, A., Gonzalez, M.V. and Dufour, J. (2002) Zeolite synthesis employing alkaline waste effluents from the aluminum industry. Environmental Progress, 21, 105–110.

    Article  Google Scholar 

  • Marino, O. and Mascolo, G. (1982) Thermal stability of Mg, Al double hydroxides modified by anionic exchange. Thermochimica Acta, 55, 377–383.

    Article  Google Scholar 

  • Mascolo, G. (1986) Thermal stability of lithium aluminium hydroxy salts. Thermochimica Acta, 102, 67–73.

    Article  Google Scholar 

  • Mascolo, G. and Marino, O. (1980) A new synthesis and characterization of magnesium-aluminium hydroxides. Mineralogical Magazine, 43, 619–621.

    Article  Google Scholar 

  • Mascolo, G. and Marino, O. (1981) Proceedings of the 2nd European Symposium on Thermal Analysis, Aberdeen (D. Dollimore, editor). Heyden, London.

  • Meyn, M., Beneke, K. and Lagaly, G. (1990) Anion exchange reaction of layered double hydroxides. Inorganic Chemistry, 29, 5201–5207.

    Article  Google Scholar 

  • Miyata, S. (1975) The syntheses of hydrotalcite-like compounds and their structures and physico-chemical properties — I: The systems Mg2+-Al3+-NO3, Mg2+-Al3+-Cr, Mg2+-Al3+-ClO4, Ni2+-Al3+-Cr and Zn2+-Al3+-Cl. Clays and Clay Minerals, 23, 369–375.

    Article  Google Scholar 

  • Miyata, S. (1980) Physico-chemical properties of synthetic hydrotalcites in relation to composition. Clays and Clay Minerals, 28, 50–56.

    Article  Google Scholar 

  • Miyata, S. (1983) Anion exchange properties of hydrotalcite-like compounds. Clays and Clay Minerals, 31, 305–311.

    Article  Google Scholar 

  • Miyata, S. and Okada, A. (1977) Synthesis of hydrotalcite-like compounds and their physico-chemical properties — the systems Mg2+-Al3+-SO42− and Mg2+-Al3+-CrO42−. Clays and Clay Minerals, 25, 14–18.

    Article  Google Scholar 

  • Moreno, N., Querol, X., Plana, F., Andres, J.M., Janssen, M. and Nugteren, H. (2002) Pure zeolite synthesis from silica extracted from coal fly ashes. Journal of Chemical Technology and Biotechnology, 11, 274–279.

    Article  Google Scholar 

  • Morigi, M., Scavetta, E., Berrettoni, M., Giorgetti, M. and Tonelli, D. (2001) Sulfate-selective electrodes based on hydrotalcites. Analytica Chimica Acta, 439, 265–272.

    Article  Google Scholar 

  • Nakamoto, K. (1970) Infrared Spectra of Inorganic and Coordination Compounds. Wiley, New York.

    Google Scholar 

  • Nakamoto, K., Fujita, J., Tanaka, S. and Kobayashi, M. (1957) Infrared spectra of metallic complexes. IV. Comparison of the infrared spectra of unidentate and bidentate metallic complexes. Journal of the American Chemical Society, 19, 4904–4908.

    Article  Google Scholar 

  • Reichle, W.T. (1986) Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite). Solid State Ionics, 22, 135–141.

    Article  Google Scholar 

  • Ross, G.J. and Kodama, H. (1967) Properties of a synthetic magnesium-aluminum carbonate hydroxide and its relationship to magnesium-aluminum double hydroxide, manasseite and hydrotalcite. American Mineralogist, 52, 1036–1047.

    Google Scholar 

  • Sema, C.J., White, J.L. and Hem, S.L. (1977) Anion aluminium hydroxide gel interactions. Soil Science Society of America Proceedings, 41, 1009–1013.

    Article  Google Scholar 

  • Suzuki, E. and Ono, Y. (1988) Aldol condensation reaction between formaldehyde and acetone over heat-treated synthetic hydrotalcite and hydrotalcite-like compounds. Bulletin of the Chemical Society of Japan, 61, 1008–1010.

    Article  Google Scholar 

  • Taylor, H.F.W. (1969) Segregation and cation-ordering in sjoegrenite and pyroaurite. Mineralogical Magazine, 37, 338–342.

    Article  Google Scholar 

  • Taylor, H.F.W. (1973) Crystal structures of some double hydroxide minerals. Mineralogical Magazine, 39, 377–389.

    Article  Google Scholar 

  • Trifirò, F., Vaccari, A. and Clause, O. (1994) Nature and properties of nickel-containing mixed oxides obtained from hydrotalcite-type anionic clays. Catalysis Today, 21, 185–195.

    Article  Google Scholar 

  • Vaccari, A. (1998) Preparation and catalytic properties of cationic and anionic clays. Catalysis Today, 41, 53–71.

    Article  Google Scholar 

  • Vaccari, A. (1999) Clays and catalysis: a promising future. Applied Clay Science, 14, 161–198.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Álvarez-Ayuso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Álvarez-Ayuso, E., Nugteren, H.W. Synthesis of a Mg2+-Al3+-SO 2−4 -Hydrotalcite-Type Compound from the acid Wastewaters of the Aluminum-Anodizing Industry. Clays Clay Miner. 53, 11–17 (2005). https://doi.org/10.1346/CCMN.2005.0530102

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2005.0530102

Key Words

Navigation