Skip to main content
Log in

Fe-Rich Clays in a Weathering Profile Developed from Serpentinite

  • Published:
Clays and Clay Minerals

Abstract

Bulk mineralogical and chemical properties of a weathering profile derived from serpentinite were studied using classical pedological methods (Munsell soil colors, particle-size distribution, density, cation exchange capacity, exchangeable bases, among others) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) results. Bulk clay fractions were characterized using X-ray diffraction, thermal analysis, electron microprobe, Mössbauer and infrared spectroscopies. Bulk geochemical mass-balance calculated from ICP-AES results shows leaching of both Mg and Si which reflects the early weathering of serpentine minerals. As a consequence, newly formed clay minerals are enriched with the least mobile elements, i.e. Fe and Al, producing dioctahedral smectites. These dioctahedral smectites are complex, heterogeneous and consist mainly of two populations. One population is an Fe-rich montmorillonite with little or no tetrahedral charge and Fe3+ as the dominant octahedral cation whereas the second population exhibits tetrahedral charge. Both populations occur as interstratified layers in the lower horizon of the weathering profile but show increasing segregation into well-defined end-members towards the surface horizons. Considering total Al and Fe contents, these clays differentiate into two chemical composition domains, Fe-rich clays in the lower profile and Al-rich clays towards the surface horizons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, E.B. (1988) Morphology, fertility and classification of productive soils on serpentinised peridotite in California, U.S.A. Geoderma, 41, 337–351.

    Article  Google Scholar 

  • Alexander, E.B., Adamson, C., Zinke, P.J. and Graham, R.C. (1989) Soils and conifer productivity on serpentinized peridotite of the Trinity ophiolite, California. Soil Science, 148, 412–423.

    Article  Google Scholar 

  • Bailey, S.W. (1980) Structures of layer silicates. Pp. 1–123 in: Crystal Structures of Clay Minerals and their X-ray Identification (G.W. Brindley and G. Brown, editors). Monograph 5, Mineralogical Society, London.

    Google Scholar 

  • Berre, A., Ducloux, J. and Dupuis, J., (1974) Pédogénèse sur roches ultrabasiques en climat tempéré humide: les sols sur serpentinites du Limousin occidental. Extrait de Science du sol — Bulletin de l’A.F.E.S., 3, 135–146.

    Google Scholar 

  • Besset, F. (1978) Localisations et répartitions successives du nickel au cours de l’altération latéritiques des péridotites de Nouvelle-Calédonie. PhD thesis, France, 129 pp.

  • Bonifacio, E., Zanini, E., Boero, V. and Franchini-Angela, M. (1996) Pedogenesis in a soil catena on serpentinite in north-western Italy. Geoderma, 75, 33–51.

    Article  Google Scholar 

  • Bulmer, C.E and Lavkulich, L.M. (1994) Pedogenic and geochemical processes of ultramafic soils along a climatic gradient in southwestern British Columbia. Canadian Journal of Soil Science, 74, 165–177.

    Article  Google Scholar 

  • Cleaves, E.T., Fisher, D.W. and Bricker, O.P. (1974) Chemical weathering of serpentinite in the Eastern Piedmont of Maryland. Geological Society of America Bulletin, 85, 437–444.

    Article  Google Scholar 

  • Coombe, D.E., Frost, L.C., Le Bas, M. and Watters, W. (1956) The nature and origin of the soils over the Cornish serpentine. Journal of Ecology, 605–615.

    Article  Google Scholar 

  • Delvaux, B., Mestdagh, M.M., Vielvoye, L. and Herbillon, A.J. (1989) XRD, IR and ESR study of experimental alteration of Al-nontronite into mixed layer kaolinite/smectite. Clay Minerals, 24, 617–630.

    Article  Google Scholar 

  • Ducloux, J., Meunier, A. and Velde, B. (1976) Smectite, chlorite, and a regular interlayered chlorite-vermiculite in soils developed on a small serpentinite body. Massif Central, France. Clay Minerals, 11, 121–135.

    Article  Google Scholar 

  • Farmer, V.C. (1974) The Layer Silicates. Pp. 331–365 in: The Infrared Spectra of Minerals (V.C. Farmer, editor). Monograph 4, Mineralogical Society, London.

    Chapter  Google Scholar 

  • Gaudin, A. (2002) Cristallochimie des smectites du gisement latéritique nickélifère de Murrin Murrin (Ouest Australie). PhD thesis, Université d’Aix-Marseille III, Aix en Provence, France, 265 pp.

    Google Scholar 

  • Golighty, J.P. (1981) Nickeliferous laterite deposits. Economic Geology, 75, 710–735.

    Google Scholar 

  • Goodman, B.A., Russell, J.D., Fraser, A.R. and Woodhams, F.W.D. (1976) A Mössbauer and IR spectroscopic study of the structure of nontronite. Clays and Clay Minerals, 24, 53–59.

    Article  Google Scholar 

  • Graham, R.C., Diallo, M.M. and Lund, L.J. (1990) Soils and mineral weathering on phyllite colluvium and serpentinite in northwestern California. Soil Science Society of America Journal, 54, 1682–1690.

    Article  Google Scholar 

  • Gresens, R.L. (1967) Composition-volume relationships of metasomatism. Chemical Geology, 2, 47–65.

    Article  Google Scholar 

  • Harward, M.E., Castea, D.D. and Sayegh, A.H. (1969) Properties of vermiculites and smectites: expansion and collapse. Clays and Clay Minerals, 11, 437–447.

    Article  Google Scholar 

  • Hofmann, U. and Klemen, R. (1950) Verlust der Austauschfähigkeit von Lithiuminonen an Bentonit durch Erhitzung. Zeitschrift für anorganische und allgemeine Chemie, 262, 95–99.

    Article  Google Scholar 

  • Isok, J.D. and Harward, M.E. (1982) Influence of soil moisture on smectite formation in soils derived from serpentinite. Soil Science Society of America Journal, 46, 1106–1108.

    Article  Google Scholar 

  • Joussein, E., Petit, S. and Decarreau, A. (2001) Une nouvelle méthode de dosage des minéraux argileux en mélange par spectroscopie IR. Comptes Rendus de l’Académie des Sciences, 332, 83–89.

    Google Scholar 

  • Lanson, B. (1993) DECOMPXR, X-ray Decomposition Program. ERM, Poitiers, France.

    Google Scholar 

  • Mackenzie, R.C. (1970) Simple phyllosilicates based on gibbsite- and brucite-like sheets. Pp. 498–534 in: Differential Thermal Analysis I (R.C. Mackenzie, editor). Mineralogical Society, London.

    Google Scholar 

  • Madejová, J., Kraus, I. and Komadel, P. (1995) Fourier transform infrared spectroscopic characterization of dioctahedral smectites and illites from the main Slovak deposits. Geologica Carpathica — Series Clays, 1, 23–32.

    Google Scholar 

  • Madejová, J., Komadel, P. and Čičel, B. (1994) Infrared study of octahedral site populations in smectites. Clay Minerals, 29, 319–326.

    Article  Google Scholar 

  • Mehra, O.P. and Jackson, M.L. (1960) Iron oxides removal from soils and clays by dithionite-citrate systems buffered with sodium bicarbonate. 7th national Conference of Clay Minerals, 317–327.

  • N’Kanika Wa Rupiya, P. (1979) Etude géochimique des métaux dans les sols développés sur le massif de serpentines de La Roche-l’Abeille (Haute Vienne, France). PhD thesis, Université d’Orléans, France, 120 pp.

    Google Scholar 

  • Olis, A.C., Malla, P.B. and Douglas, L.A. (1990) The rapid estimation of the layer charges of 2:1 expanding clays from a single alkylammonium ion expansion. Clay Minerals, 25, 39–50.

    Article  Google Scholar 

  • Pelletier, B. (1983) Localisation du nickel dans les minerais «garnieritiques» de Nouvelle-Calédonie. PhD thesis, Sciences géologiques, Mémoire 73, Université de Strasbourg, France.

    Google Scholar 

  • Petit, S., Prot, T., Decarreau, A., Mosser, C. and Toledo-Groke, M.C. (1992) Crystallochemical study of a population of particles in smectites from a lateritic weathering profile. Clays and Clay Minerals, 40, 436–445.

    Article  Google Scholar 

  • Petit, S., Caillaud, J., Righi, D., Madejová, J., Elsass, F. and Köster, H.M. (2002) Characterization and crystal chemistry of an Fe-rich montmorillonite from Ölberg, Germany. Clay Minerals, 37, 283–297.

    Article  Google Scholar 

  • Rabenhorts, M.C., Foss, J.E. and Fanning, D.S. (1982) Genesis of Maryland soils formed from serpentinite. Soil Science Society of America Journal, 46, 607–616.

    Article  Google Scholar 

  • Rancourt, D.G. (1994a) Mössbauer spectroscopy of minerals. I. Inadequacy of Lorentzian-line doublets in fitting spectra arising from quadrupole splitting distributions. American Mineralogist, 21, 244–249.

    Google Scholar 

  • Rancourt, D.G (1994b) Mössbauer spectroscopy of mineral. II. Problem of resolving cis and trans octahedral Fe2+ sites. American Mineralogist, 21, 250–257.

    Google Scholar 

  • Rancourt, D.G., Dang, M.Z. and Lalonde, A.E. (1992) Mössbauer spectroscopy of tetrahedral Fe3+ in trioctahedral micas. American Mineralogist, 11, 34–43.

    Google Scholar 

  • Rancourt, D.G., McDonald, A.M., Lalonde, A.E. and Ping, J.Y. (1993) Mössbauer absorber thickness for accurate site populations in Fe-bearing minerals. American Mineralogist, 78, 1–7.

    Google Scholar 

  • Reesman, A.L., Pickett, E.E. and Keller, W.D. (1969) Aluminous ions in aqueous solutions. American Journal of Science, 267, 99–113.

    Article  Google Scholar 

  • Schwertmann, U. (1964) Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung. Zeitschrift fuer Pflanzenernaehrung, Duengung, Bodenkunde, 105(3) 194–201.

    Article  Google Scholar 

  • Shirozu, H. (1978) Chlorite minerals. Pp. 243–264 in: Clays and Clay Minerals of Japan (T. Suyo and S. Shimoda, editors). Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • Smith, B.F.L. and Mitchell, B.D. (1987) Characterization of poorly ordered minerals by selective chemical methods. Pp. 275–294 in: A Handbook of Determinative Methods in Clay Mineralogy. (M.J. Wilson, editor). Chapman & Hall, London.

    Google Scholar 

  • Trescases, J.J. (1969) Premières observations sur l’altération des péridotites de Nouvelle-Calédonie. Pédologie, Géochimie, Géomorphologie, cahier. O.R.S.T.O.M., Série. Géologie, Paris, 1, 27–57.

    Google Scholar 

  • Trescases, J.J. (1975) L’évolution géochimique supergène des roches ultrabasiques en zone tropicale. Formations des gisements nickélifères de Nouvelle-Calédonie. PhD thesis, Université de Poitiers, France, 254 pp.

    Google Scholar 

  • Trescases, J.J. (1986) Nickeliferous laterites: A review on the contributions of the last ten years. Geological Survey of India, Memoirs, 120, 51–62.

    Google Scholar 

  • Wesolowski, D.J. (1992) Aluminum speciation and equilibria in aqueous solution: The solubility of gibbsite in the system Na-K-Cl-OH-Al(OH)4 from 0 to 100°C. Geochimica et Cosmochimica Acta, 56, 1065–1091.

    Article  Google Scholar 

  • Wildman, W.E., Jackson, M.L. and Whittig, L.D. (1968) Iron-rich montmorillonite formation in soils derived from serpentinite. Soil Science Society of America Proceedings, 32, 787–794.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Caillaud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caillaud, J., Proust, D., Righi, D. et al. Fe-Rich Clays in a Weathering Profile Developed from Serpentinite. Clays Clay Miner. 52, 779–791 (2004). https://doi.org/10.1346/CCMN.2004.05206013

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2004.05206013

Key Words

Navigation