Skip to main content
Log in

Kaolinite to halloysite-7 Å transformation in the kaolin deposit of São Vicente de Pereira, Portugal

  • Published:
Clays and Clay Minerals

Abstract

The transformation of kaolinite to halloysite-7 Å was identified in the kaolin deposit of São Vicente de Pereira (SVP), using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). Both the 02, 1̄ and 13̄, 13 reflections show changes in the XRD patterns along the kaolinite to halloysite-7 Å transition, and the FTIR spectra show changes corresponding to both OH and Si-O-stretching bands and Al-O-Si-bending vibrations. The interlayer water content in the kaolinite structure increases during transition. The two-layer periodicity of well-ordered kaolinite and rolling up of kaolinite plates are observed using high-resolution transmission electron microscopy (HRTEM). Long and short tubes exhibit halloysite-7 Å. No structural Fe was found in the kaolinite samples. Analytical electron microscopy (AEM) indicates no substitution of Al3+ for Si4+. The Si/Al ratio shows values of ∼1 for the kaolinite and rolled kaolinite plates. The 27Al magic angle spinning neutron magnetic resonance (MAS-NMR) spectra display a resonance centered at ∼1 ppm, assigned to six-coordinated aluminum. The transformation of kaolinite to halloysite-7 Å is controlled by surface reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anand, R.R., Gilkes, R.J., Armitage, T.M. and Hillyer, J.W. (1985) Feldspar weathering in a lateritic saprolite. Clays and Clay Minerals, 33, 31–43.

    Article  Google Scholar 

  • Bailey, S.W. (1988) Polytypism of 1:1 layer silicates. Pp. 9–27 in: Hydrous Phyllosilicates (exclusive of Micas) (S.W. Bailey, editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington, D.C.

    Chapter  Google Scholar 

  • Bailey, S.W. (1990) Halloysite—a critical assessment. Pp. 89–98 in: Proceedings of 9th International Clay Conference, Strasbourg (V.C. Farmer and Y. Tardy, editors). Sciences Géologiques Mémoire, Strasbourg, France, 85.

    Google Scholar 

  • Banfield, J.F. and Eggleton, R.A. (1990) Analytical transmission electron microscope studies of plagioclase, muscovite and K-feldspar weathering. Clays and Clay Minerals, 38, 77–89.

    Article  Google Scholar 

  • Bates, T.F., Hildebrand, F.A. and Swineford, A. (1950) Morphology and structure of endellite and halloysite. American Mineralogist, 6, 237–248.

    Google Scholar 

  • Bobos, I. and Gomes, C. (1998) Greisen and post-greisen alteration in the kaolin deposit of São Vicente de Pereira (Portugal). Canadian Mineralogist, 36, 1621–1630.

    Google Scholar 

  • Bobos, I. and Gomes, C. (1999) Hydrothermal alteration and kaolinization in the north western border of Ossa Morena zone. EUG 10, Abstract volume, 4. Cambridge Publications, 592 pp.

  • Bobos, I. and Gomes, C. (2000) Dissolution of K-feldspar into Si-Al gel and crystallization of halloysite identified in the kaolin deposit of São Vicente de Pereira (Portugal). Geologica Carpathica, 51, 49–57.

    Google Scholar 

  • Chaminé, H.I., Ribeiro, A. and Pereira, E. (1995) Cartografia geológica e estratigrafia da faixa precâmbrica do sector Espinho—Albergaria-A-Velha (Zona de Ossa-Morena). Faculdade de Ciências, Universidade do Porto. Memoria, 4, 329–333.

    Google Scholar 

  • Churchman, G.J. and Gilkes, R.J. (1989) Recognition of intermediates in the possible transformation of halloysite to kaolinite in weathering profiles. Clay Minerals, 24, 579–590.

    Article  Google Scholar 

  • Costanzo, P.M. and Giese, R.F. Jr. (1985) Dehydration of synthetic hydrated kaolinite: a model for the dehydration of halloysite (10 Å). Clays and Clay Minerals, 33, 415–423.

    Article  Google Scholar 

  • Costanzo, P.M., Giese, R.F. Jr. and Clemency, C.V. (1984) Synthesis of a 10 Å hydrated kaolinite. Clays and Clay Minerals, 32, 29–35.

    Article  Google Scholar 

  • Eswaran, H. and Bin, W.C. (1978) A study of deep weathering profile on granite in peninsular Malaysia: Mineralogy of the clay, silt and sand fractions. Soil Science Society of America Journal, 42, 149–158.

    Article  Google Scholar 

  • Giese, R.F. Jr. (1988) Kaolin minerals: structures and stability. Pp. 29–66 in: Hydrous Phyllosilicates (exclusive of Micas) (S.W. Bailey, editor). Reveiws in Mineralogy, 19. Mineralogical Society of America, Washington, D.C.

    Chapter  Google Scholar 

  • Gilkes, R.J., Anand, R.R. and Suddhiprakarn, A. (1986) How the microfabric of soils may be influenced by the structure and chemical composition of parent minerals. Pp. 1093–1106 in: Trans International Soil Science Conference, Hamburg, 6.

    Google Scholar 

  • Grim, R. (1967) Clay Mineralogy. McGraw Hill, New York, 596 pp.

    Google Scholar 

  • Hinckley, D.N. (1963) Variability in “crystallinity” values among the kaolin deposits of the coastal plain of Georgia and South Carolina. Clays and Clay Minerals, 11, 229–235.

    Article  Google Scholar 

  • Honjo, G., Kitamura, N. and Mihama, K. (1954) A study of clay minerals by means of single-crystal electron diffraction diagram—the structure of tubular kaolin. Clay Minerals Bulletin, 2, 133–141.

    Article  Google Scholar 

  • Jackson, M.L. (1975) Soil Chemical Analyses—Advanced Course. Published by the author, Madison, Wisconsin, 895 pp.

    Google Scholar 

  • Jiang, W.T. and Peacor, D.R. (1991) Transmission electron microscopic study of the kaolinisation of muscovite. Clays and Clay Minerals, 39, 1–13.

    Article  Google Scholar 

  • Keller, W.D. (1978) Classification of kaolins exemplified by their textures in scanning electron microscopy. Clays and Clay Minerals, 26, 1–20.

    Article  Google Scholar 

  • Kohyama, N., Fukushima, K. and Fukami, A. (1978) Observation of the hydrated form of tubular halloysite by an electron microscope equipped with an environmental cell. Clays and Clay Minerals, 26, 25–40.

    Article  Google Scholar 

  • Ma, C. and Eggleton, R.A. (1999) Surface layer types of kaolinite: A high resolution transmission electron microscopy study. Clays and Clay Minerals, 47, 181–191.

    Article  Google Scholar 

  • Ma, C., FitzGerald, J.D., Eggleton, R.A. and Llewellyn, D.J. (1998) Analytical electron microscopy in clays and other phyllosilicates: Loss of elements from a 90-nm stationary beam of 300 KeV electrons. Clays and Clay Minerals, 46, 301–317.

    Article  Google Scholar 

  • MacEwan, D.M.C. and Wilson, M.J. (1980) Interlayer and intercalation complexes of clay minerals. Pp. 197–249 in: Crystal Structures of Clay Minerals and Their X-ray identification (G.W. Brindley and G. Brown, editors). Monograph 5. Mineralogical Society, London.

    Google Scholar 

  • McBride, M.B. (1976) A critique of diffuse double layer models applied to colloid and surface chemistry. Clays and Clay Minerals, 24, 598–608.

    Google Scholar 

  • Meunier, A. and Velde, B. (1979) Weathering mineral facies in altered granites: The importance of local small-scale equilibrium. Mineralogical Magazine, 43, 261–268.

    Article  Google Scholar 

  • Newman, R.H., Childs, C.W. and Churchman, G.J. (1994) Aluminium co-ordination and structural disorder in halloysite and kaolinite by 27Al NMR spectroscopy. Clay Minerals, 29, 305–312.

    Article  Google Scholar 

  • Plançon, A. and Tchoubar, C. (1977) Determination of structural defects in phyllosillicates by X-ray powder diffraction. Clays and Clay Minerals, 25, 436–450.

    Article  Google Scholar 

  • Plançon, A. and Zacharie, C. (1990) An expert system for the structural characterization of kaolinites. Clay Minerals, 25, 249–260.

    Article  Google Scholar 

  • Plançon, A., Giese, R.F. and Snyder, R. (1988) The Hinckley index for kaolinites. Clay Minerals, 23, 249–260.

    Article  Google Scholar 

  • Rand, B. and Melton, I.E. (1976) Particle interactions in aqueous kaolinite suspensions, I. Effect of pH and electrolyte upon the mode of particle interaction in homoionic sodium kaolinite suspensions. Journal of Colloidal Interface Science, 60, 308–320.

    Article  Google Scholar 

  • Range, K.J., Range, A. and Weiss, A. (1969) Fire clay type kaolinite or fire clay minerals? Experimental classification of kaolinite-halloysite minerals. Pp. 3–13 in: Proceedings International Clay Conference Tokyo, Volume 1. (L. Heller and A. Weiss, editors). Israel University Press, Jerusalem.

    Google Scholar 

  • Ribeiro, A., Pereira, E. and Severo, L. (1980) Análise da deformação da zona de cisalhamento Porto-Tomar na transversal de Oliveira de Azeméis. Comunicação de Servicio Geologico de Portugal, 66, 3–9.

    Google Scholar 

  • Robertson, I.D. and Eggleton, R.A. (1991) Weathering of granitic muscovite to kaolinite and halloysite and plagioclase-derived kaolinite to halloysite. Clays and Clay Minerals, 39, 113–126.

    Article  Google Scholar 

  • Rocha, J. and Klinowski, J. (1990) 29Si and 27Al magic-angle-spinning NMR studies of the thermal transformation of kaolinite. Physics and Chemistry of Minerals, 17, 179–186.

    Article  Google Scholar 

  • Rocha, J. and Pedrosa de Jesus, J.D. (1994) 27A1 satellite transition MAS NMR spectroscopy of kaolinite. Clay Minerals, 29, 287–291.

    Article  Google Scholar 

  • Singh, B. (1996) Why does halloysite roll?—A new model. Clays and Clay Minerals, 44, 191–197.

    Article  Google Scholar 

  • Singh, B. and Gilkes, R.J. (1992) An electron optical investigation of the alteration of kaolinite to halloysite. Clays and Clay Minerals, 40, 212–229.

    Article  Google Scholar 

  • Singh, B. and Mackinnon, I. (1996) Experimental transformation of kaolinite to halloysite. Clays and Clay Minerals, 44, 825–834.

    Article  Google Scholar 

  • Stoch, L. and Sikora, W. (1976) Transformation of micas in the process of kaolinization of granites and gneisses. Clays and Clay Minerals, 24, 156–162.

    Article  Google Scholar 

  • Stumm, W. (1992) Chemistry of the Solid-Water Interface. Wiley & Sons, New York, 346 pp.

    Google Scholar 

  • Sunagawa, I. (1975) Morphology of minerals. Pp. 509–587 in: Morphology of Crystals (I. Sunagawa, editor). Terra Science Publishes Co., Tokyo.

    Google Scholar 

  • Tari, G., Bobos, I., Gomes, C. and Ferreira, J.M. (1999) Modification of charge density during the kaolinite to hallosyite-7 Å transformation. Journal of Colloid Interface Surface, 209, 360–366.

    Article  Google Scholar 

  • Wada, K. (1961) Lattice expansion of kaolin minerals by treatment with potassium acetate. American Mineralogist, 46, 78–91.

    Google Scholar 

  • Wilke, B.S., Schwertmann, U. and Murad, E. (1978) An occurrence of polymorphic halloysite in granite saprolite of the Bayerischer Wald, Germany. Clay Minerals, 13, 67–77.

    Article  Google Scholar 

  • Zvyagin, B.B. (1967) Electron Diffraction Analysis of Clay Minerals Structures. Plenum Press, New York, 364 pp.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joelle Duplay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobos, I., Duplay, J., Rocha, J. et al. Kaolinite to halloysite-7 Å transformation in the kaolin deposit of São Vicente de Pereira, Portugal. Clays Clay Miner. 49, 596–607 (2001). https://doi.org/10.1346/CCMN.2001.0490609

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2001.0490609

Key Words

Navigation