Skip to main content
Log in

Authigenic phyllosilicates in the middle triassic kremikovtsi sedimentary exhalative siderite iron formation, Western Balkan, Bulgaria

  • Published:
Clays and Clay Minerals

Abstract

Two distinct assemblages of authigenic phyllosilicates were distinguished in the Kremikovtsi sedimentary exhalative (SEDEX) siderite iron formation (SIF) and noted as important tracers of two styles of mineralization characteristic of this type of ore deposit. Hydrothermal-sedimentary layer silicates are represented by rare occurrences of relict microcrystalline Mg-rich berthierine with a relatively low degree of structural ordering, associated closely with framboidal pyrite as an intergranular matrix cementing sparry siderite grains; the larger silicates are also represented by the diagenetic transformation product of berthierine, chamosite. Berthierine precipitated under anoxic conditions during advanced early diagenesis after chert deposition. Hydrothermal-epigenetic phyllosilicates (berthierine, chamosite, illite-smectite (I-S), and kaolinite) from the barite-sulfide assemblage are characterized by: crystalline and undeformed habits; relatively larger particle size, low-temperature polytypes, low to no mixed layering, and a high degree of crystallinity; absence of impurities and dominant monomineralic aggregates; affiliation to initial open spaces and deposition mainly as vug fillings and linings. They formed under pronounced control by the vuggy porosity of the siderite host caused by the invasion of acid (pH = 3–5), hot (200–230°C) hydrothermal fluids probably at the stage of burial diagenesis of the SIF under relatively stable reducing conditions fluctuating near the sulfide/sulfate stability boundary (\(\left( {\log {{\rm{P}}_{{{\rm{O}}_{\rm{2}}}}} \cong - 30} \right)\)). The greater Al concentration in hydrothermal solution than in seawater determines the affiliation of phyllosilicates in the Phanerozoic SEDEX SIFs to aluminous species (berthierine, chamosite) unlike low to non aluminous ones (greenalite, stilpnomelane) in the Precambrian IFs. The berthierine compositions, expressed by the Mg/Fe vs. Al/Si ratios, are a sensitive indicator of the geological conditions under which they formed (marine, non-marine, hydrothermal ore and pre-ore), thus allowing the genetic discrimination of this mineral from various localities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albee, A.L. (1962) Relationships between the mineral association, chemical composition and physical properties of the chlorite series. American Mineralogist, 47, 851–870.

    Google Scholar 

  • Alt, J.C. and Jiang, W.-T. (1991) Hydrothermally precipitated mixed-layer illite-smectite in recent massive sulfide deposits from the sea floor. Geology, 19, 570–573.

    Article  Google Scholar 

  • Andreeva, O.V., Rusinova, O.V. and Volovikova, I.M. (1989) Typomorphic peculiarities of dioctahedral K-micas and mixed-layer formations from low-temperature wall-rock metasomatites. Mineralogicheskii zhurnal, 11, 21–32 (in Russian, with English summary).

    Google Scholar 

  • Arima, M., Fleet, M.E. and Barnett, R.L. (1985) Titanian berthierine: a Ti-rich serpentine-group mineral from the Picton ultramafic dyke, Ontario. Canadian Mineralogist, 23, 213–220.

    Google Scholar 

  • Bailey, S.W. (1988a) X-ray diffraction identification of the polytypes of mica, serpentine, and chlorite. Clays and Clay Minerals, 36, 193–213.

    Article  Google Scholar 

  • Bailey, S.W. (1988b) Structures and compositions of other trioctahedral 1:1 phyllosilicates. Pp. 169–188 in: Hydrous Phyllosilicates (Exclusive of Micas) (S.W. Bailey, editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington, D.C.

    Chapter  Google Scholar 

  • Bailey, S.W. (1988c) Odinite, a new dioctahedral-trioctahedral Fe3+-rich 1:1 clay mineral. Clay Minerals, 23, 237–247.

    Article  Google Scholar 

  • Bailey, S.W. and Brown, B.E. (1962) Chlorite polytypism: I. Regular and semi-random one-layer structures. American Mineralogist, 47, 819–850.

    Google Scholar 

  • Bailey, S.W. and Tyler, S.A. (1960) Clay minerals associated with the Lake Superior iron ores. Economic Geology, 55, 150–175.

    Article  Google Scholar 

  • Battaglia, S. (1999) Applying X-ray geothermometer diffraction to a chlorite. Clays and Clay Minerals, 47, 54–63.

    Article  Google Scholar 

  • Bhattacharyya, D.P. (1983) Origin of berthierine in ironstones. Clays and Clay Minerals, 31, 173–182.

    Article  Google Scholar 

  • Brindley, G.W. (1951) The crystal structure of some chamosite minerals. Mineralogical Magazine, 29, 502–525.

    Article  Google Scholar 

  • Brindley, G.W. (1961) Kaolin, serpentine, and kindred minerals. Pp. 51–131 in: The X-ray Identification and Crystal Structures of Clay Minerals (G. Brown, editor). Mineralogical Society, London.

    Google Scholar 

  • Brindley, G.W. (1982) Chemical compositions of berthierines—a review. Clays and Clay Minerals, 30, 153–155.

    Article  Google Scholar 

  • Brindley, G.W. and Youell, R.F. (1953) Ferrous chamosite and ferric chamosite. Mineralogical Magazine, 30, 57–70.

    Article  Google Scholar 

  • Brown, B.E. and Bailey, S.W. (1963) Chlorite polytypism. II. Crystal structure of a one-layer Cr-chlorite. American Mineralogist, 48, 42–61.

    Google Scholar 

  • Bubenicek, L. (1961) Recherches sur la constitution et la répartition des minerais de fer dans l’Aalénien de Lorraine. Thèse d’Ingénieur-Docteur, Faculté des Sciences de Nancy, 204 pp.

  • Curtis, C.D. and Spears, D.A. (1968) The formation of sedimentary iron minerals. Economic Geology, 63, 257–270.

    Article  Google Scholar 

  • Curtis, C.D., Hughes, C.R., Whiteman, J.A. and Whittle, C.K. (1985) Compositional variation within some sedimentary chlorites and some comments on their origin. Mineralogical Magazine, 49, 375–386.

    Article  Google Scholar 

  • Damyanov, Z.K. (1996) Genesis of the Kremikovtsi deposit and metallogenic perspectives of the Sredec iron ore region. Geologica Balcanica, 26, 3–24.

    Google Scholar 

  • Damyanov, Z.K. (1998) Ore petrology, whole-rock chemistry and zoning of the Kremikovtsi carbonate-hosted sedimentary exhalative iron(+Mn)-barite-sulfide deposit, Western Balkan, Bulgaria. Neues Jahrbuch für Mineralogie Abhandlungen, 174, 1–42.

    Google Scholar 

  • Deudon, M. (1955) La chamosite orthorhombique du minerai de Sainte-Barbe, couche grise. Bulletin Société français de Minéralogie et de Cristallographie, 78, 475–480.

    Google Scholar 

  • Deverin, L. (1945) Étude pétrographique des minerais de fer oolithiques du Dogger des Alpes suisses. Beitr. Geologie der Schweiz., Geotech. ser., Lf. 13, v. 2, 115 pp.

  • Dickson, F.W. and Tunell, G. (1968) Mercury and antimony deposits associated with active hot springs in the western United States. Pp. 1673–1701 in: Ore Deposits of the United States, 1933–1967, Volume 2 (J.D. Ridge, editor). American Institute of Mining, Metallurgy and Petroleum Engineering.

  • Drits, V.A. and Kossowskaya, A.G. (1991) Clay Minerals: Micas, Chlorites. Nauka, Moscow 176 pp. (in Russian).

    Google Scholar 

  • Drits, V.A., Plançon, A., Sakharov, B.A., Besson, G., Tsipursky, S.I. and Tchoubar, C. (1984) Diffraction effects calculated for structural models of K-saturated montmorillonite containing different types of defects. Clay Minerals, 19, 541–561.

    Article  Google Scholar 

  • Eberl, D.D., Środoń, J., Lee, M., Nadeau, P.H. and Northrop, H.R. (1987) Sericite from the Silverton caldera, Colorado: Correlation among structure, composition, origin, and particle thickness. American Mineralogist, 72, 914–934.

    Google Scholar 

  • Ellis, A.J. (1967) The chemistry of some explored geothermal systems. Pp. 465–514 in: Geochemistry of Hydrothermal Ore Deposits (H.L. Barnes, editor). Holt, Rinehart and Winston, Inc., New York.

    Google Scholar 

  • Emery, K.O., Hunt, J.M. and Hays, E.E. (1969) Thermal brines and ore sediments in the Red Sea: an overview. Pp. 557–571 in: Hot Brines and Recent Heavy Metal Deposits in the Red Sea (E.T. Degens and D.A. Ross, editors). Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Engelhardt, W. von (1942) Die Strukturen von Thuringit, Bavalit und Chamosit und ihre Stellung in der Chlorit-gruppe. Zeitschrift für Kristallographie, 104, 142–159.

    Google Scholar 

  • Eugster, H.P. and Chou, I-M. (1973) The depositional environments of Precambrian banded iron-formations. Economic Geology, 68, 1144–1168.

    Article  Google Scholar 

  • Floran, R.J. and Papike, J.J. (1975) Petrology of the low-grade rocks of the Gunflint iron-formation, Ontario-Minnesota. Geological Society of America Bulletin, 86, 1169–1190.

    Article  Google Scholar 

  • Foster, M.D. (1962) Interpretation of the composition and a classification of the chlorites. U.S. Geological Survey Professional Paper, 414-A, 33 pp.

  • Halbach, P. (1970) Mineral constituents and facies development of the principal seam horizon of the Franconian Dogger beta in the area of the claim of the “Kleiner Johannes” company near Pegnitz, Upper Franconia. Geologische Jahrbuch, 88, 471–507.

    Google Scholar 

  • Hallimond, A.F. (1939) On the relation of chamosite and daphnite to the chlorite group. Mineralogical Magazine, 25, 441–465.

    Article  Google Scholar 

  • Harder, H. (1974) Illite mineral synthesis at surface temperatures. Chemical Geology, 14, 241–253.

    Article  Google Scholar 

  • Harder, H. (1978) Synthesis of iron layer silicate minerals under natural conditions. Clays and Clay Minerals, 26, 65–72.

    Article  Google Scholar 

  • Hayes, J.B. (1970) Polytypism of chlorite in sedimentary rocks. Clays and Clay Minerals, 18, 285–306.

    Article  Google Scholar 

  • Hornibrook, E.R.C. and Longstaffe, F.J. (1996) Berthierine from the Lower Cretaceous Clearwater Formation, Alberta, Canada. Clays and Clay Minerals, 44, 1–21.

    Article  Google Scholar 

  • Horton, D.G. (1983) Argillic alteration associated with the Amethyst vein system, Creede mining district, Colorado. Ph.D. thesis, University of Illinois, Urbana, Illinois.

    Google Scholar 

  • Hower, J. and Mowatt, T.C. (1966) The mineralogy of illites and mixed-layer illite/montmorillonites. American Mineralogist, 51, 825–854.

    Google Scholar 

  • Hughes, C.R. (1987) The composition and origin of layer silicates in iron-formations and ironstones: a preliminary analytical transmission electron microscopical study. Ph.D. thesis, University of Sheffield, UK.

    Google Scholar 

  • Iijima, A. and Matsumoto, R. (1982) Berthierine and chamosite in coal measures of Japan. Clays and Clay Minerals, 30, 264–274.

    Article  Google Scholar 

  • Inoue, A. and Utada, M. (1983) Further investigations of a conversion series of dioctahedral mica/smectites in the Shinzan hydrothermal alteration area, northeast Japan. Clays and Clay Minerals, 31, 401–412.

    Article  Google Scholar 

  • James, H.L. (1954) Sedimentary facies of iron-formation. Economic Geology, 49, 235–293.

    Article  Google Scholar 

  • James, H.L. (1966) Chemistry of the iron-rich sedimentary rocks. US Geological Survey Professional Paper, 440-W, 61 pp.

  • Jiang, W.-T., Peacor, D.R. and Slack, J.F. (1992) Microstructures, mixed layering, and polymorphism of chlorite and retrograde berthierine in the Kidd Creek massive sulfide deposit, Ontario. Clays and Clay Minerals, 40, 501–514.

    Article  Google Scholar 

  • Kalaydzhiev, S. (1982) New data on the structure of Kremikovtsi Ore Field. Review of the Bulgarian Geological Society, 43, 159–171 (in Bulgarian with English abstract).

    Google Scholar 

  • Kalgeropoulos, S.I. and Scott, S.D. (1985) Mineralogy and geochemistry of tuffaceous exhalites (Tetsusekiei) of the Fukazawa mine, Hokuroku district, Japan. Pp. 412–432 in: The Kuroko and Related Volcanogenic Massive Sulfide Deposits (B.J. Skinner, editor). Economic Geology, Monograph, 5.

  • Kastner, M. (1979) Silica polymorphs. Pp. 99–109 in: Marine Minerals (R.G. Burns, editor). Reviews in Mineralogy, 6. Mineralogical Society of America, Washington, D.C.

    Chapter  Google Scholar 

  • Keller, W.D. (1988) Authigenic kaolinite and dickite associated with metal sulfides—probable indicators of a regional thermal event. Clays and Clay Minerals, 36, 153–158.

    Article  Google Scholar 

  • Kepezhinskas, K.B. (1965) Statistical Analysis of Chlorites and their Paragenetic Types. Nauka, Moscow, 135 pp. (in Russian).

    Google Scholar 

  • Kimberley, M.M. (1989) Exhalative origins of iron formations. Ore Geology Reviews, 5, 13–145.

    Article  Google Scholar 

  • Klekl, L.V. (1979) Regularities of chamosite distribution in bauxites of the Belgorod District of the Kursk magnetic anomaly. Lithology and Mineral Resources, 14, 377–382 (in Russian).

    Google Scholar 

  • Kodama, H. and Foscolos, A.E. (1981) Occurrence of berthierine in Canadian Arctic desert soils. Canadian Mineralogist, 19, 279–283.

    Google Scholar 

  • Kotelnikov, D.D. and Konyukhov, A.I. (1986) Clay Minerals in Sedimentary Rocks. Nedra, Moscow, 247 pp. (in Russian).

    Google Scholar 

  • Laird, J. (1988) Chlorites: metamorphic petrology. Pp. 405–453 in: Hydrous Phyllosilicates (Exclusive of Micas) (S.W. Bailey, editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington, D.C.

    Chapter  Google Scholar 

  • Lu, G., McCabe, C., Henry, D.J. and Schedl, A. (1994) Origin of hematite carrying a Late Paleozoic remagnetization in a quartz sandstone bed from the Silurian Rose Hill Formation, Virginia, USA. Earth and Planetary Science Letters, 126, 235–246.

    Article  Google Scholar 

  • MacGregor, M., Lee, G.W. and Wilson, G.V. (1920) The Iron Ores of Scotland. British Geological Survey Memoir Special Reports on Mineral Resources, 11, 240 pp.

  • Maxwell, D.T. and Hower, J. (1967) High-grade diagenesis and low-grade metamorphism of illite in the Precambrian Belt series. American Mineralogist, 52, 843–857.

    Google Scholar 

  • Maynard, J.B. (1983) Geochemistry of Sedimentary Ore Deposits. Springer-Verlag, New York, 305 pp.

    Book  Google Scholar 

  • Maynard, J.B. (1986) Geochemistry of oolitic iron ores, an electron microprobe study. Economic Geology, 81, 1473–1483.

    Article  Google Scholar 

  • McDowell, S.D. and Elders, W.A. (1980) Authigenic layer silicate minerals in borehole Elmore 1, Salton Sea geothermal field, California, USA. Contributions to Mineralogy and Petrology, 74, 293–310.

    Article  Google Scholar 

  • Nemecz, E. (1981) Clay Minerals. Akadémiai Kiadó, Budapest, 547 pp.

    Google Scholar 

  • Nikolskaya, N.K., Goilo, E.A. and Frank-Kamenetsky, V.A. (1986) X-ray diffraction peculiarities of disordered one-layer orthogonal berthierine. Mineralogicheskii zhurnal, 8, 89–93 (in Russian with English summary).

    Google Scholar 

  • Novák, F., Vtelensky, J., Losert, J., Kupka, F. and Valcha, Z. (1959) Orthochamosit, ein neues Mineral aus den hydrothermalen Erzgängen von Kank bei Kutná Hora (Kuttenberg) in der Tschechoslowakei. Geologie, 8, 159–167.

    Google Scholar 

  • Odin, G.S., Bailey, S.W., Amouric, M., Fröhlich, F. and Waychunas, G.A. (1988) Mineralogy of the verdine facies. Pp. 159–206 in: Green Marine Clays (G.S. Odin, editor). Developments in Sedimentology, 45. Elsevier, Amsterdam.

    Google Scholar 

  • Omelyanenko, B.I., Volovikova, I.M., Drits, V.A., Zvyagin, B.B., Andreeva, O.V. and Sakharov, B.A. (1982) On the content of term sericite. Izvestiya Akademii Nauk SSSR, seriya Geologicheskaya, 5, 69–87 (in Russian).

    Google Scholar 

  • Panayotov, V. (1974) The Kremikovtsi iron ore deposit. Pp. 257–266 in: Twelve Ore Deposits in Bulgaria (P. Dragov and B. Kolkovski, editors). 4th IAGOD Symposium, Varna, Publishing House of the Bulgarian Academy of Science, Sofia.

    Google Scholar 

  • Perelman, A.I. (1989) Geochemistry. Vysshaya shkola, Moscow, 528 pp. (in Russian).

    Google Scholar 

  • Popov, P. (1989) Tectonic position and structures of the Upper Cretaceous mineralizations in Banat-Srednogorie and Western Balkan metallogenic zones, Bulgaria. Dr.Sci. thesis, University of Mining & Geology, Sofia, 543 pp. (in Bulgarian).

    Google Scholar 

  • Porrenga, D.H. (1966) Clay minerals in recent sediments of the Niger delta. Pp. 221–233 in: Clays and Clay Minerals, Proceedings of the 14th National Conference (S.W. Bailey, editor). Pergamon Press, New York.

    Chapter  Google Scholar 

  • Protich, M. (1955) Étude minéralogique des phyllites de quelques minerais de fer de Serbie (Yougoslavie). Bulletin Société français de Minéralogie et de Cristallographie, 78, 528–534.

    Google Scholar 

  • Rohrlich, V., Price, N.B. and Calvert, S.E. (1969) Chamosite in the recent sediments of Loch Etive, Scotland. Journal of Sedimentary Petrology, 39, 624–631.

    Google Scholar 

  • Rude, P.D. and Aller, R.C. (1989) Early diagenetic alteration of lateritic particle coatings in Amazon continental shelf sediments. Journal of Sedimentary Petrology, 59, 704–716.

    Google Scholar 

  • Rusinova, O.V. and Rusinov, V.L. (1980) Structural features of chlorites from epithermal ore deposits. Pp. 281–291 in: Scientific Bases and Utilization of the Typomorphism of Minerals. Proceedings of the XI IMA meeting, Novosibirsk. Nauka, Moscow (in Russian with English abstract).

  • Rusinova, O.V. and Rusinov, V.L. (1986) Compositional variations, polytypism, and formation conditions of dioctahedral K-micas. Pp. 41–59 in: Metasomatism, Mineralogy, and Genetic Questions of Volcanic-Hosted Gold and Silver Deposits (D.S. Korzhinskii, editor). Nauka, Moscow (in Russian).

    Google Scholar 

  • Rusinova, O.V., Rusinov, V.L. and Troneva, N.V. (1986) Composition, some structural features, and formation conditions of wall-rock alteration and ore chlorites and berthierines. Pp. 5–40 in: Metasomatism, Mineralogy, and Genetic Questions of Volcanic-Hosted Gold and Silver Deposits (D.S. Korzhinskii, editor). Nauka, Moscow (in Russian).

    Google Scholar 

  • Schultz, R.W. (1966) Lower Carboniferous cherty ironstones at Tynagh, Ireland. Economic Geology, 61, 311–342.

    Article  Google Scholar 

  • Shilin, A.V., Kotelnikov, D.D., Solodkova, N.A. and Vachugova, L.I. (1979) On the diagnostics and genesis of chamosite in ancient sedimentary rocks. Vestnik Moskovskogo Universiteta, seriya Geologiya, 4, 49–58 (in Russian).

    Google Scholar 

  • Slack, J.F., Jiang, W.-T., Peacor, D.R. and Okita, P.M. (1992) Hydrothermal and metamorphic berthierine from the Kidd Creek volcanogenic massive sulfide deposit, Timmins, Ontario. Canadian Mineralogist, 30, 1127–1142.

    Google Scholar 

  • Środoń, J. and Eberl, D.D. (1984) Illite. Pp. 495–544 in: Micas (S.W. Bailey, editor). Reviews in Mineralogy, 13. Mineralogical Society of America, Washington, D.C.

    Chapter  Google Scholar 

  • Sudo, T. (1943) On some low temperature hydrous silicates found in Japan. Bulletin of the Chemical Society of Japan, 18, 281–329.

    Article  Google Scholar 

  • Sudo, T. and Shimoda, S. (1978) Clays and Clay Minerals of Japan. Elsevier, Amsterdam, 326 pp.

    Google Scholar 

  • Taylor, K.G. (1990) Berthierine from the non-marine Wealden (Early Cretaceous) sediments of south-east England. Clay Minerals, 25, 391–399.

    Article  Google Scholar 

  • Thurrell, R.G., Sergeant, G.A. and Young, B.R. (1970) Chamosite in Weald Clay from Horsham, Sussex. Natural Environmental Research Council, Report 70/7.

  • Toth, T.A. and Fritz, S.J. (1997) An Fe-berthierine from a Cretaceous laterite: Part I. Characterization. Clays and Clay Minerals, 45, 564–579.

    Article  Google Scholar 

  • Tronkov, D. and Damyanov, Z. (1993) Triassic fossil remains in the siderite ore of the Kremikovtsi iron ore deposit. Geologica Balcanica, 23, 34.

    Google Scholar 

  • Tvaltschrelidze, A.G. and Scheglov, V.I. (1990) A mineralogical-geochemical model of vein barite ore-genesis. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 119, 21–34 (in Russian, with English abstract).

    Google Scholar 

  • Tyler, S.A. and Bailey, S.W. (1961) Secondary glauconite in the Biwabic iron-formation of Minnesota. Economic Geology, 56, 1033–1044.

    Article  Google Scholar 

  • Vassileff, L. (1993) Pre-Late Cretaceous collides in Bulgaria. Review of the Bulgarian Geological Society, 54, 1–19 (in Bulgarian with English abstract).

    Google Scholar 

  • Velde, B. (1985) Clay Minerals. A Physico-Chemical Explanation of their Occurrence. Developments in Sedimentology, 40, Elsevier, Amsterdam, 427 pp.

    Google Scholar 

  • Velde, B., Raoult, J.-F. and Leikine, M. (1974) Metamorphosed berthierine pellets in Mid-Cretaceous rocks from north-eastern Algeria. Journal of Sedimentary Petrology, 44, 1275–1280.

    Google Scholar 

  • Walker, J.R. (1989) Polytypism of chlorite in very low grade metamorphic rocks. American Mineralogist, 74, 738–743.

    Google Scholar 

  • Walker, J.R. (1993) Chlorite polytype geothermometry. Clays and Clay Minerals, 41, 260–267.

    Article  Google Scholar 

  • Warren, E.A. and Curtis, C.D. (1989) The chemical composition of authigenic illite within two sandstone reservoirs as analysed by ATEM. Clay Minerals, 24, 137–156.

    Article  Google Scholar 

  • Weiss, Z. and Durovic, S. (1983) Chlorite polytypism. II. Classification and X-ray identification of trioctahedral polytypes. Acta Crystallographica, B39, 552–557.

    Article  Google Scholar 

  • Weissberg, B.G., Browne, P.L. and Seward, T.M. (1979) Ore metals in active geothermal systems. Pp. 738–780 in: Geochemistry of Hydrothermal Ore Deposits, 2nd edition (H.L. Barnes, editor). John Wiley & Sons, New York.

    Google Scholar 

  • White, D.E. (1967) Mercury and base-metal deposits associated with thermal mineral waters. Pp. 575–631 in: Geochemistry of Hydrothermal Ore Deposits (H.L. Barnes, editor). Holt, Rinehart and Winston, Inc., New York.

    Google Scholar 

  • White, S.H., Huggett, J.M. and Shaw, H.F. (1985) Electron-optical studies of phyllosilicate intergrowths in sedimentary and metamorphic rocks. Mineralogical Magazine, 49, 413–423.

    Article  Google Scholar 

  • Yau, Y.-C., Peacor, D.R., Beane, R.E., Essene, E.J. and McDowell, S.D. (1988) Microstructures, formation mechanisms, and depth-zoning of phyllosilicates in geothermally altered shales, Salton Sea, California. Clays and Clay Minerals, 36, 1–10.

    Article  Google Scholar 

  • Yershova, Z.P., Nikitina, A.E., Perfilev, Y.D. and Babeshkin, A.M. (1976) Study of chamosites by gamma-resonance (Mössbauer) spectroscopy. Pp. 211–219 in: Proceedings of the International Clay Conference, 1975, Mexico City (S.W. Bailey, editor). Applied Publishing, Wilmette, Illinois.

    Google Scholar 

  • Zhabin, A.G., Samsonova, N.S. and Isakovich, I.Z. (1987) Mineralogical Studies of Wall-rock Alteration Halos. Nedra, Moscow, 159 pp. (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhelyazko Damyanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damyanov, Z., Vassileva, M. Authigenic phyllosilicates in the middle triassic kremikovtsi sedimentary exhalative siderite iron formation, Western Balkan, Bulgaria. Clays Clay Miner. 49, 559–585 (2001). https://doi.org/10.1346/CCMN.2001.0490607

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2001.0490607

Key Words

Navigation