Skip to main content
Log in

Mechanisms and crystal chemistry of oxidation in annite: Resolving the hydrogen-loss and vacancy reactions

  • Published:
Clays and Clay Minerals

Abstract

A synthetic octahedral-site-vacancy-free annite sample and its progressive oxidation, induced by heating in air, were studied by powder X-ray diffraction (pXRD), Mössbauer spectroscopy, nuclear reaction analysis (NRA), Raman spectroscopy, X-ray fluorescence (XRF) spectroscopy, gas chromatography (GC), thermogravimetric analysis (TGA), differential thermal analysis (DTA), scanning electron microscopy (SEM), and size-fraction separation methods. For a set heating time and as temperature is increased, the sample first evolves along an annite-oxyannite join, until all H is lost via the oxybiotite reaction (Fe2+ + OH ⇌ Fe3+ + O2− + H↑). It then evolves along an oxyannite-ferrioxyannite join, where ideal ferrioxyannite, KFe3+8/31/3AlSi3O12, is defined as the product resulting from complete oxidation of ideal oxyannite, KFe3+2Fe2+AlSi3O12, via the vacancy mechanism (3 Fe2+ ⇌ 2 Fe3+ + [6]□ + Fe↑). A pillaring collapse transition is observed as a collapse of c near the point where \({\rm{F}}{{\rm{e}}^{2 + }}{\rm{/Fe}} = {\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 3$}}\) and all OH groups are predicted and observed to be lost. Quantitative analyses of H, using NRA, GC, and Raman spectroscopy, corroborate this interpretation and, in combination with accurate ferric/ferrous ratios from Mössbauer spectroscopy and lattice parameter determinations, allow a clear distinction to be made between vacancy-free and vacancy-bearing annite. The amount of Fe in ancillary Fe oxide phases produced by the vacancy mechanism is measured by Mössbauer spectroscopy to be 11.3(5)% of total Fe, in agreement with both the theoretical prediction of 1/9 = 11.1% and the observed TGA weight gain. The initiation of Fe oxide formation near the point of completion of the oxybiotite reaction (\({\rm{F}}{{\rm{e}}^{2 + }}{\rm{/Fe}} = {\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 3$}}\)) is corroborated by pXRD, TGA, Raman spectroscopy, and appearance of an Fe oxide hyperfine field sextet in the Mössbauer spectra. The region of Fe oxide formation is shown to coincide with a region of octahedral site vacancy formation, using a new Mössbauer spectral signature of vacancies that consists of a component at 2.2 mm/s in the [6]Fe3+ quadrupole splitting distribution (QSD). The crystal chemical behaviors of annite-oxyannite and of oxyannite-ferrioxyannite are best contrasted and compared to the behaviors of other layer-silicate series in terms of b vs. [D] (average octahedral cation to O bond length). This also leads to a diagnostic test for the presence of octahedral site vacancies in hydrothermally synthesized annite, based on a graph of b vs. Fe2+/Fe. The implications of the observed sequence of thermal oxidation reactions for the thermodynamic relevance of the oxybiotite and vacancy reactions in hydrothermal syntheses are examined and it is concluded that the oxybiotite reaction is the relevant reaction in the single-phase stability field of annite, at high hydrogen fugacity and using ideal starting cation stoichiometry. The vacancy reaction is only relevant in a multi-phase field, at lower hydrogen fugacity, that includes an Fe oxide equilibrium phase (magnetite) that can effectively compete for Fe, or when using non-ideal starting cation stoichiometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appleman, D.E. and Evans Jr., H.T. (1973) Indexing and least-squares refinement of powder diffraction data. Geological Survey Computer Contribution, 20, 1–26.

    Google Scholar 

  • Benisek, A., Dachs, E., Redhammer, G., Tippelt, G. and Amthauer, G. (1996) Activity-composition relationship in Tschermak’s substituted Fe biotites at 700°C, 2 kbar. Contributions to Mineral and Petrology, 125, 85–99.

    Article  Google Scholar 

  • Borggaard, O.K., Lindgreen, H.B. and Mørup, S. (1982) Oxidation and reduction of structural iron in chlorite at 480°C. Clays and Clay Minerals, 30, 353–363.

    Article  Google Scholar 

  • Bouda, S. and Isaac, K.P. (1986) Influence of soil redox conditions on oxidation of biotite. Clay Minerals, 21, 149–157.

    Article  Google Scholar 

  • Brindley, G.W. and Lemaitre, J. (1987) Thermal, oxidation and reduction reactions of clay minerals. Pp. 319–370 in: Chemistry of Clays and Clay Minerals (A.C.D. Newman, editor). Monograph 6, Mineralogical Society, London.

    Google Scholar 

  • Carter, G.F., Margrave, J.L. and Templeton, D.H. (1952) A high-temperature crystal modification of KO2. Acta Crystallographica, 5, 851.

    Article  Google Scholar 

  • Chou, I.-M. (1997) The use and misuse of the fH2 sensors: a discussion of the paper by Dachs (1994). Contributions to Mineral and Petrology, 128, 302–305.

    Article  Google Scholar 

  • Chung, F.H. (1974a) Quantitative interpretation of X-ray diffraction patterns of mixtures. I. Matrix-flushing methods for quantitative multicomponent analysis. Acta Crystallographica, 7, 519–525.

    Google Scholar 

  • Chung, F.H. (1974b) Quantitative interpretation of X-ray diffraction analysis of mixtures. II. Adiabatic principle of X-ray diffraction analysis of mixtures. Journal of Applied Crystallography, 7, 526–531.

    Article  Google Scholar 

  • Clowe, C.A., Popp, R.K. and Fritz, S.J. (1988) Experimental investigation of the effect of oxygen fugacity on ferric-ferrous ratios and unit-cell parameters of four natural clinoamphiboles. American Mineralogist, 73, 487–499.

    Google Scholar 

  • Cygan, G.L., Chou, I.-M. and Sherman, D.M. (1996) Reinvestigation of the annite = sanidine + magnetite + H2 reaction using the fH2-sensor technique. American Mineralogist, 81, 475–484.

    Article  Google Scholar 

  • da Costa, G.M., De Grave, E. and Vandenberghe, R.E. (1998) Mössbauer studies of maghemite and Al-substituted maghemites. Hyperfine Interactions, 117, 207–243.

    Article  Google Scholar 

  • Dachs, E. (1994) Annite stability revised. 1. Hydrogen-sensor data for the reaction annite = sanidine + magnetite + H2. Contributions to Mineralogy and Petrology, 117, 229–240.

    Article  Google Scholar 

  • Dachs, E. and Benisek, A. (1997) Annite stability revised: hydrogen-sensor data for the reaction annite = sanidine + magnetite + H2: additional results and reply to Chou. Contributions to Mineralogy and Petrology, 128, 306–311.

    Article  Google Scholar 

  • Dang, M.-Z., Rancourt, D.G., Dutrizac, J.E., Lamarche, G. and Provencher, R. (1998) Interplay of surface conditions, particle size, stoichiometry, cell parameters, and magnetism in synthetic hematite-like materials. Hyperfine Interactions, 117, 271–319.

    Article  Google Scholar 

  • Davis, B.L., Kath, R. and Splide, M. (1990) The reference intensity ratio: its measurement and significance. Powder Diffraction, 5, 76–78.

    Article  Google Scholar 

  • de Faria, D.L.A., Silva, S.V. and de Oliveira, M.T. (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. Journal of Raman Spectroscopy, 28, 873–878.

    Article  Google Scholar 

  • De Grave, E. and Van Alboom, A. (1991) Evaluation of ferrous and ferric Mössbauer fractions. Physics and Chemistry of Minerals, 18, 337–342.

    Article  Google Scholar 

  • Donnay, G., Donnay, J.D.H. and Takeda, H. (1964) Trioctahedral one-layer micas. II. Predictions of the structure from composition and cell dimensions. Acta Crystallographica, 17, 1374–1381.

    Article  Google Scholar 

  • Eugster, H.P. and Wones, D.R. (1962) Stability relations of the ferruginous biotite, annite. Journal of Petrology, 3, 82–125.

    Article  Google Scholar 

  • Farmer, V.C., Russell, J.D., McHardy, W.J., Newman, A.C.D., Ahlrichs, J.L. and Rimsaite, J.Y.H. (1971) Evidence for loss of protons and octahedral iron from oxidized biotites and vermiculites. Mineralogical Magazine, 38, 121–137.

    Article  Google Scholar 

  • Feeley, T.C. and Sharp, Z.D. (1996) Chemical and hydrogen isotope evidence for in situ dehydrogenation of biotite in silicic magma chambers. Geology, 24, 1021–1024.

    Article  Google Scholar 

  • Feldstein, S.N., Lange, R.A., Vennemann, T. and O’Neil, J.R. (1996) Ferric-ferrous ratios, H2O contents and D/H ratios of phlogopite and biotite from lavas of different tectonic regimes. Contributions to Mineralogy and Petrology, 126, 51–66.

    Article  Google Scholar 

  • Ferrow, E. (1987) Mössbauer effect and X-ray diffraction studies of synthetic iron bearing trioctahedral micas. Physics and Chemistry of Minerals, 14, 276–280.

    Article  Google Scholar 

  • Ferrow, E. (1990) The relation between c dimension and exchange components in micas. Mineralogy and Petrology, 43, 23–25.

    Article  Google Scholar 

  • Ferrow, E. and Annersten, H. (1984) Ferric iron in trioctahedral micas. UUDMP Research Report no. 39. University of Uppsala, Uppsala, Sweden, 24 pp.

    Google Scholar 

  • Gilkes, R.J., Young, R.C. and Quirk, J.P. (1972a) The oxidation of octahedral iron in biotite. Clays and Clay Minerals, 20, 303–315.

    Article  Google Scholar 

  • Gilkes, R.J., Young, R.C. and Quirk, J.P. (1972b) Oxidation of ferrous iron in biotite. Nature, Physical Science, 236, 89–91.

    Article  Google Scholar 

  • Goodman, B.A. and Wilson, M.J. (1973) A study of the weathering of a biotite using the Mössbauer effect. Mineralogical Magazine, 39, 448–454.

    Article  Google Scholar 

  • Güttler, B., Niemann, W. and Redfern, S.A.T. (1989) EXAFS and XANES spectroscopy study of the oxidation and deprotonation of biotite. Mineralogical Magazine, 53, 591–602.

    Article  Google Scholar 

  • Hazen, R.M. and Wones, D.R. (1972) The effect of cation substitutions on the physical properties of trioctahedral micas. American Mineralogist, 57, 103–129.

    Google Scholar 

  • Hazen, R.M. and Wones, D.R. (1978) Predicted and observed compositional limits of trioctahedral micas. American Mineralogist, 63, 885–892.

    Google Scholar 

  • Hellner, E. and Euler, R. (1957) Hydrothermal und röntgenographische untersuchungen an gesteinsbildenden mineralen—I. Geochimica et Cosmochimica Acta, 12, 47–56.

    Article  Google Scholar 

  • Hogg, C.S. and Meads, R.E. (1975) A Mössbauer study of thermal decomposition of biotites. Mineralogical Magazine, 40, 79–88.

    Article  Google Scholar 

  • Hubbard, C.R. and Snyder, R.L. (1988) RIR—Measurement and use in quantitative XRD. Powder Diffraction, 3, 74–77.

    Article  Google Scholar 

  • Ivanitskiy, V.P., Kalinechenko, A.M., Matyash, I.V. and Khomyak, T.P. (1975) Mössbauer and PMR studies of oxidation and dehydroxylation in biotite. Geochemistry International, 12, 1864–1871.

    Google Scholar 

  • Kodama, H., McKeague, J.A., Tremblay, R.J., Gosselin, J.R. and Townsend, M.G. (1977) Characterization of iron oxide compounds in soils by Mössbauer and other methods. Canadian Journal of Earth Sciences, 14, 1–15.

    Article  Google Scholar 

  • Lagarec, K. and Rancourt, D.G. (1998) Recoil: Spectral analysis and data treatment software for Mössbauer spectroscopy. http://www.science.uottawa.ca/phy/∼recoil/.

  • Lalonde, A.E., Rancourt, D.G. and Ping, J.Y. (1998) Accuracy of ferric/ferrous determinations in micas: a comparison of Mössbauer spectroscopy and the Pratt and Wilson wet-chemical methods. Hyperfine Interactions, 117, 175–204.

    Article  Google Scholar 

  • Lanford, W.A. (1995) Nuclear reactions for hydrogen analysis. Pp. 193–204 in: Handbook of Modern Jon Beam Materials Analysis (J.R. Tesmer and M.A. Nastasi, editors). Materials Research Society, Pittsburg, Philadelphia.

    Google Scholar 

  • Lanford, W.A., Trautvetter, H.P., Ziegler, J.F. and Keller, J. (1976) New precision technique for measuring the concentration versus depth of hydrogen in solids. Applied Physics Utters, 28, 566–568.

    Article  Google Scholar 

  • Lear, P.R. and Stucki, J.W. (1985) Role of structural hydrogen in the reduction and reoxidation of iron in nontronite. Clays and Clay Minerals, 33, 539–545.

    Article  Google Scholar 

  • McKeown, D.A., Bell, M.I. and Etz, E.S. (1999) Raman spectra and vibrational analysis of the trioctahedral mica phlogopite. American Mineralogist, 84, 970–976.

    Article  Google Scholar 

  • Mercier, P.H.J. (1996) An 57Fe Mössbauer spectroscopy study of the effects of different equilibration temperatures and oxygen fugacity buffers on the Fe2+ and Fe3+ site populations in synthetic annite mica. M.Sc. thesis, University of Ottawa, Ottawa, Canada. 141 pp.

    Google Scholar 

  • Mercier, P.H.J. (2001) Crystal chemistry of trioctahedral layer silicates: testing the limits of simple geometrical models (in preparation). Ph.D. thesis, University of Ottawa, Ottawa, Canada.

    Google Scholar 

  • Mercier, P.H.J., Rancourt, D.G. and Berman, R.G. (1996) Aspects of the crystal chemistry of annite mica. P. 50 in: Conference Proceedings, ICAME-95, Bologna, SIF.

  • Mercier, P.H.J., Rancourt, D.G., Berman, R.G. and Robert, J.-L. (1999) Control of site populations, at synthesis, by inter-sheet differential thermal expansion in a 2:1 layer silicate. Pp. 221–228 in: Clays for our Future (H. Kodama, A.R. Mermut and J.K. Torrance, editors). Proceedings of the 11th International Clay Conference, Ottawa, Canada.

  • Murad, E. and Johnston, J.H. (1987) Iron oxides and oxyhydroxides Pp. 507–582 in: Mössbauer Spectroscopy Applied to Inorganic Chemistry, vol. II. Plenum Publishing Company, New York.

    Google Scholar 

  • Ohta, T., Takeda, H. and Takéuchi, Y. (1982) Mica polytypism: similarities in the crystal structures of coexisting 1M and 2M1 oxybiotite. American Mineralogist, 67, 298–310.

    Google Scholar 

  • Pajcini, V. and Dhamelincourt, P. (1994) Raman study of OH-stretching vibrations in kaolinite at low temperatures. Applied Spectroscopy, 48, 638–641.

    Article  Google Scholar 

  • Radoslovich, E.W. (1962) The cell dimensions and symmetry of layer-lattice silicates. II. Regression relations. American Mineralogist, 47, 617–636.

    Google Scholar 

  • Radoslovich, E.W. and Norrish, K. (1962) The cell dimensions and symmetry of layer-lattice silicates. I. Some structural considerations. American Mineralogist, 47, 599–616.

    Google Scholar 

  • Rancourt, D.G. (1989) Accurate site populations from Mössbauer spectroscopy. Nuclear Instruments and Methods in Physics Research B (NIMB), 44, 199–210.

    Article  Google Scholar 

  • Rancourt, D.G. (1994a) Mössbauer spectroscopy of minerals. I. Inadequacy of Lorentzian-line doublets in fitting spectra arising from quadrupole splitting distributions. Physics and Chemistry of Minerals, 21, 244–249.

    Article  Google Scholar 

  • Rancourt, D.G. (1994b) Mössbauer spectroscopy of minerals. II. Problem of resolving cis and trans octahedral Fe2+ sites. Physics and Chemistry of Minerals, 21, 250–257.

    Article  Google Scholar 

  • Rancourt, D.G. (1996) Analytic methods for Mössbauer spectral analysis of complex materials. Pp. 105–124 in: Mössbauer Spectroscopy Applied to Magnetism and Materials Science. Plenum Press, New York.

    Chapter  Google Scholar 

  • Rancourt, D.G. (1998) Mössbauer spectroscopy in clay science. Hyperfine Interactions, 117, 3–38.

    Article  Google Scholar 

  • Rancourt, D.G. and Ping, J.Y. (1991) Voigt-based methods for arbitrary-shape static hyperfine parameter distributions in Mössbauer spectroscopy. Nuclear Instruments and Methods in Physics Research B (NIMB), 58, 85–97.

    Article  Google Scholar 

  • Rancourt, D.G., Tume, P. and Lalonde, A.E. (1993a) Kinetics of the (Fe2+ + OH)mica = (Fe3+ + O2−)mica + H oxidation reaction in bulk single-crystal biotite studied by Mössbauer spectroscopy. Physics and Chemistry of Minerals, 20, 276–284.

    Article  Google Scholar 

  • Rancourt, D.G., McDonald, A.M., Lalonde, A.E. and Ping, J.Y. (1993b) Mössbauer absorber thicknesses for accurate site populations in Fe-bearing minerals. American Mineralogist, 78, 1–7.

    Google Scholar 

  • Rancourt, D.G., Christie, I.A.D., Royer, M., Kodama, H., Robert, J.-L., Lalonde, A.E. and Murad, E. (1994a) Determination of accurate [4]Fe3+, [6]Fe3+, and [6]Fe2+ site populations in synthetic annite by Mössbauer spectroscopy. American Mineralogist, 79, 51–62.

    Google Scholar 

  • Rancourt, D.G., Christie, I.A.D., Lamarche, G., Swainson, I. and Flandrois, S. (1994b) Magnetism of synthetic and natural annite mica: ground state and nature of excitations in an exchange-wise two-dimensional easy-plane ferromagnet with disorder. Journal of Magnetism and Magnetic Materials, 138, 31–44.

    Article  Google Scholar 

  • Rancourt, D.G., Ping, J.Y. and Berman, R.G. (1994c) Mössbauer spectroscopy of minerals. III. Octahedral-site Fe2+ quadrupole splitting distributions in the phlogopite-annite series. Physics and Chemistry of Minerals, 21, 258–267.

    Article  Google Scholar 

  • Rancourt, D.G., Ping, J.Y., Boukili, B. and Robert, J.-L. (1996) Octahedral-site Fe2+ quadrupole splitting distributions from Mössbauer spectroscopy along the (OH, F)-annite join. Physics and Chemistry of Minerals, 23, 63–71.

    Article  Google Scholar 

  • Rebbert, C.R., Partin, E. and Hewitt, D.A. (1995) Synthetic biotite oxidation under hydrothermal conditions. American Mineralogist, 80, 345–354.

    Article  Google Scholar 

  • Redhammer, G.J. (1998) Characterisation of synthetic trioctahedral micas by Mössbauer spectroscopy. Hyperfine Interactions, 117, 85–115.

    Article  Google Scholar 

  • Redhammer, G.J., Beran, A., Schneider, J., Amthauer, G. and Lottermoser, W. (2000) Spectroscopic and structural properties of synthetic micas on the annite-siderophyllite binary: synthesis, crystal structure refinement, Mössbauer, and infrared spectroscopy. American Mineralogist, 85, 449–465.

    Article  Google Scholar 

  • Redhammer, G.J., Beran, A., Dachs, E. and Amthauer, G. (1993) A Mössbauer study and X-ray diffraction study of annites synthesized at different oxygen fugacities and crystal chemical implications. Physics and Chemistry of Minerals, 20, 382–394.

    Article  Google Scholar 

  • Rimsaite, J. (1970) Structural formulae of oxidized and hydroxyl-deficient micas and decomposition of the hydroxyl group. Contributions to Mineralogy and Petrology, 25, 225–240.

    Article  Google Scholar 

  • Robert, J.-L., Bény, J.-M., Bény, C. and Volfinger, M. (1989) Characterization of lepidolites by Raman and infrared spectrometries. I. Relationships between OH-stretching wavenumbers and compositions. Canadian Mineralogist, 27, 225–235.

    Google Scholar 

  • Robert, M. (1971) Étude experimentale de l’évolution des micas (biotites). Annales Agronomie, 22, 43–93.

    Google Scholar 

  • Ross, G.J. and Rich, C.I. (1974) Effect of oxidation and reduction on potassium exchange of biotite. Clays and Clay Minerals, 22, 355–360.

    Article  Google Scholar 

  • Royer, M. (1991) Site-specific Fe-57 Mössbauer recoilless fractions in true trioctahedral micas. MS thesis, University of Ottawa, Ottawa, Canada.

    Google Scholar 

  • Sanz, J., Gonzales-Carreno, T. and Gancedo, R. (1983) On dehydroxylation mechanism of a biotite in vacuo and oxygen. Physics and Chemistry of Minerals, 9, 14–18.

    Article  Google Scholar 

  • Schnatter, K.H., Doremus, R.H. and Lanford, W.A. (1988) Hydrogen analysis of soda-lime silicate glass. Journal of Non-crystalline Solids, 102, 11–18.

    Article  Google Scholar 

  • Shabani, A.A.T., Rancourt, D.G. and Lalonde, A.E. (1998) Determination of cis and trans Fe2+ populations in 2M1 muscovite by Mössbauer spectroscopy. Hyperfine Interactions, 117, 117–129.

    Article  Google Scholar 

  • Skogby, H. (1994) OH incorporation in synthetic clinopyroxene. American Mineralogist, 79, 240–249.

    Google Scholar 

  • Skogby, H. and Rossman, G.R. (1989) OH− in pyroxene: an experimental study of incorporation mechanism and stability. American Mineralogist, 74, 1059–1069.

    Google Scholar 

  • Smith, G., Howes, B. and Hasan, Z. (1980) Mössbauer and optical spectra of biotite: a case for Fe2+-Fe3+ interactions. Physica status solidi (A), 57, K187–K192.

    Article  Google Scholar 

  • Speer, J.A. (1984) Micas in Igneous Rocks. Pp. 299–356 in: Micas (S.W. Bailey, editor). Reviews in Mineralogy, 13. Mineralogical Society of America, Washington, D.C.

    Chapter  Google Scholar 

  • Takeda, H. and Ross, M. (1975) Mica polytypism: dissimilarities in the crystal structures of coexisting 1M and 2M1 biotite. American Mineralogist, 60, 1030–1040.

    Google Scholar 

  • Tricker, M.J., Winterbottom, A.P. and Freeman, A.G. (1976) Iron-57 conversion-electron Mössbauer spectroscopic study of the initial stages of the oxidation of biotite. Journal of Chemical Society—Dalton Transactions, 1289–1292.

  • Vedder, W. and Wilkins, R.W.T. (1969) Dehydroxylation and rehydroxylation oxidation and reduction of micas. American Mineralogist, 54, 482–509.

    Google Scholar 

  • Veith, J.A. and Jackson, M.L. (1974) Iron oxidation and reduction effects on structured hydroxyl and layer charge in aqueous suspensions of micaceous vermiculites. Clays and Clay Minerals, 22, 345–353.

    Article  Google Scholar 

  • Virgo, D. and Popp, R.K. (2000) Hydrogen deficiency in mantle-derived phlogopites. American Mineralogist, 85, 753–759.

    Article  Google Scholar 

  • Volfinger, M., Robert, J.-L., Vielzeuf, D. and Neiva, A.M.R. (1985) Structural control of the chlorine content of OH-bearing silicates (micas and amphiboles). Geochimica et Cosmochimica Acta, 49, 37–48.

    Article  Google Scholar 

  • Wada, N. and Kamitakahara, W.A. (1991) Inelastic neutron- and Raman-scattering studies of muscovite and vermiculite layered silicates. Physical Review B, 43, 2391–2397.

    Article  Google Scholar 

  • Weiss, Z., Reider, M. and Chmielova, M. (1992) Information of coordination polyhedra and their sheets in phyllosilicates. European Journal of Mineralogy, 4, 665–682.

    Article  Google Scholar 

  • Wilson, M.J. (1970) A study of weathering in a soil derived from a biotite-hornblende rock I. Weathering of biotite. Clay Minerals, 8, 291–303.

    Article  Google Scholar 

  • Wones, D.R. (1963) Physical properties of synthetic biotites on the join phlogopite-annite. American Mineralogist, 48, 1300–1321.

    Google Scholar 

  • Ziegler, J.F. and Biersack, J.P. (2000) The stopping and range of ions in matter. SRIM computer software, version SRIM-2000.39.

  • Ziegler, J.F., Biersack, J.P. and Littmark, U. (1985) The Stopping and Range of Ions in Solids. Pergamon Press, New York. 321 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Rancourt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rancourt, D.G., Mercier, P.H.J., Cherniak, D.J. et al. Mechanisms and crystal chemistry of oxidation in annite: Resolving the hydrogen-loss and vacancy reactions. Clays Clay Miner. 49, 455–491 (2001). https://doi.org/10.1346/CCMN.2001.0490601

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2001.0490601

Key Words

Navigation