Skip to main content
Log in

A HRTEM Study of Cronstedtite: Determination of Polytypes and Layer Polarity in Trioctahedral 1:1 Phyllosilicates

  • Published:
Clays and Clay Minerals

Abstract

It is shown that polytypes or stacking sequences of cronstedtite, an Fe-bearing trioctahedral 1:1 phyllosilicate, can be determined using near-atomic high-resolution transmission electron microscopy (HRTEM). By viewing along the [010], [310] and [310] directions (orthohexagonal indexing), the four groups of the standard polytypes can be distinguished. Imaging along the [100], [110] and [110] directions allows determination of the polytypes in each group. The polytypic sequences of groups A and C are intergrown at the monolayer level in cronstedtite from Lostwithiel, England, which is a new insight if compared with previous suggestions that layer stackings characteristic of different groups do not occur together. The HRTEM images also revealed the relationship between the layer polarity and the morphology of the cronstedtite crystals, where the tetrahedral sheet side points towards the top of the truncated pyramidal shape of the crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey, S. W. (1969) Polytypism of trioctahedral 1:1 layer silicates. Clays and Clay Minerals, 17, 355–371.

    Article  Google Scholar 

  • Bailey, S. W. (1988) Polytypism of 1:1 layer silicates. Pp. 9–27 in: Hydrous Phyllosilicates (Exclusive of Micas) (S. W. Bailey, editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington, D.C.

    Chapter  Google Scholar 

  • Banfield, J. F. and Murakami, T. (1998) Atomic-resolution transmission electron microscope evidence for the mechanism by which chlorite weathers to 1:1 semi-regular chlo-rite-vermiculite. American Mineralogist, 83, 348–357.

    Article  Google Scholar 

  • Banfield, J. F., Veblen, D. R. and Smith, D. J. (1991) The identification of naturally occurring TiO2(B) by structure determination using high-resolution electron microscopy, image simulation, and distance-least-squares refinement. American Mineralogist, 76, 343–353.

    Google Scholar 

  • Banfield, J. F., Bailey, S. W. and Barker, W. W. (1994) Polyso-matism, polytypism, defect microstructure, and relation mechanism in regularly and randomly interstratified serpentine and chlorite. Contribution to Mineralogy and Petrology, 117, 137–150.

    Article  Google Scholar 

  • Baronnet, A. and Kang, Z. C. (1989) About the origin of mica polytypes. Phase Transitions, 16/17, 477–493.

    Google Scholar 

  • Dornberger-Schiff, K. and Ďurovič, S. (1975a) OD interpretation of kaolinite-type structures—I: Symmetry of kaolin-ite packets and their stacking possibilities. Clays and Clay Minerals, 23, 219–229.

    Article  Google Scholar 

  • Dornberger-Schiff, K. and Ďurovič, S. (1975b) OD interpretation of kaolinite-type structures—II: The regular polytypes (MDO polytypes) and their derivation. Clays and Clay Minerals, 23, 231–246.

    Article  Google Scholar 

  • Franzini, M. (1969) The A and B mica layers and the crystal structure of sheet silicates. Contributions to Mineralogy and Petrology, 21, 203–224.

    Article  Google Scholar 

  • Frondel, C. (1962) Polytypism in cronstedtite. American Mineralogist, 47, 781–783.

    Google Scholar 

  • Geiger, C. A., Henry, D. L., Bailey, S. W. and Maj, J. J. (1983) Crystal structure of cronstedtite-2H2. Clays and Clay Minerals, 31, 97–108.

    Article  Google Scholar 

  • Hybler, J., Petřiček, V., Ďurovič, S. and Smrčok, Ľ. (2000) Refinement of the crystal structure of the cronstedtite-1T. Clays and Clay Minerals, 48, 331–338.

    Article  Google Scholar 

  • Iijima, S. and Buseck, P. R. (1978) Experimental study of disordered mica structures by high-resolution electron microscopy. Acta Crystallographica, A34, 709–719.

    Article  Google Scholar 

  • Kilaas, R. (1998) Optical and near-optical filters in high-resolution electron microscopy. Journal of Microscopy, 190, 45–51.

    Article  Google Scholar 

  • Kogure, T. and Banfield, J. F. (1998) Direct identification of the six polytypes of chlorite characterized by semi-random stacking. American Mineralogist, 83, 925–930.

    Article  Google Scholar 

  • Kogure, T. and Banfield, J. F. (2000) New insights into biotite chloritization mechanism via polytype analysis. American Mineralogist, 85, 1202–1208.

    Article  Google Scholar 

  • Kogure, T. and Murakami, T. (1998) Structure and formation mechanism of low-angle grain boundaries in chlorite. American Mineralogist, 83, 358–364.

    Article  Google Scholar 

  • Kogure, T. and Nespolo, M. (1999a) First finding of a stacking sequence with (±60°, 180°) rotation in biotite. Clays and Clay Minerals, 47, 784–792.

    Article  Google Scholar 

  • Kogure, T. and Nespolo, M. (1999b) A TEM study of long-period mica polytypes: determination of the stacking sequence of oxybiotite by means of atomic-resolution images and Periodic Intensity Distribution (PID). Acta Crystallographica, B55, 507–516.

    Article  Google Scholar 

  • Kogure, T., Saiki, K., Konno, M. and Kamino, T. (1999) HRTEM and EELS studies of reacted materials from CaF2 by electron beam irradiation. Pp. 183–188 in: Atomistic Mechanisms in Beam Synthesis and Irradiation of Materials (J. C. Barbour, S. Roorda, D. Ila and M. Tsujioka, editors). MRS Symposium Proceedings, 504. Material Research Society, Pennsylvania.

    Google Scholar 

  • Meilini, M. (1982) The crystal structure of lizardite 1T: hydrogen bonds and polytypism. American Mineralogist, 67, 587–598.

    Google Scholar 

  • Meilini, M. and Zanazzi, P. F. (1987) Crystal structures of lizardite-1T and lizardite-2H1 from Coli, Italy. American Mineralogist, 72, 943–948.

    Google Scholar 

  • Smrčok, Ľ., Ďurovič, S., Petřiček, V. and Weiss, Z. (1994) Refinement of the crystal structure of cronstedtite-3T. Clays and Clay Minerals, 42, 544–551.

    Article  Google Scholar 

  • Steadman, R. (1964) The structures of trioctahedral kaolin-type silicates. Acta Crystallographica, 17, 924–927.

    Article  Google Scholar 

  • Steadman, R. and Nuttall, P. M. (1963) Polymorphism in cronstedtite. Acta Crystallographica, 16, 1–8.

    Article  Google Scholar 

  • Steadmann, R. and Nuttall, P. M. (1964) Further polymorphism in cronstedtite. Acta Crystallographica, 17, 404–406.

    Article  Google Scholar 

  • Zvyagin, B. B. (1964) Electron Diffraction Analysis of Clay Mineral Structures. Nauka Press, Moscow, 200 pp. (in Russian).

    Google Scholar 

  • Zvyagin, B. B. (1967) Electron Diffraction Analysis of Clay Mineral Structures. Plenum Press, New York, 364 pp.

    Book  Google Scholar 

  • Zvyagin, B. B., Vrublevskaya, Z. V., Zhukhlistov, A. P., Sidor-enko, O. V., Soboleva, S. V. and Fedotov, A. F. (1979) High-voltage Electron Diffraction in the Study of Layered Minerals. Nauka Press, Moscow, 224 pp. (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Kogure.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kogure, T., Hybler, J. & Ďurovič, S. A HRTEM Study of Cronstedtite: Determination of Polytypes and Layer Polarity in Trioctahedral 1:1 Phyllosilicates. Clays Clay Miner. 49, 310–317 (2001). https://doi.org/10.1346/CCMN.2001.0490405

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2001.0490405

Key Words

Navigation