Skip to main content
Log in

Illite “Crystallinity” Revisited

  • Published:
Clays and Clay Minerals

Abstract

The Kübler Index (KI) is defined as the full width at half-maximum height (FWHM) of the 10-Å X-ray diffraction peak of illite-smectite interstratified (I-S) clay minerals. The only parameters controlling the Kübler Index are assumed to be the mean number of layers (N) in the coherent scattering domains (CSD), the variance of the distribution of the number of layers of the CSD, the mean percentage of smectite layers in I-S (%S), and the probability of layer stacking (Reichweite).

The Kübler-Index measurements on air-dried (KIAD) and ethylene-glycolated (KIEG) samples were compared to N and %S using the NEWMOD computer program to simulate X-ray diffraction patterns. Charts of KIAD versus KIEG corrected for instrumental broadening were made and isolines were mapped for constant N and %S. Isolines allow a direct and rapid determination of N and %S from KI measurements.

The method allows quantification of the metamorphic anchizone limits by considering mean thickness of fundamental particles in MacEwan crystallites. The transition from diagenesis to the anchizone and from the anchizone to the epizone of low-grade metamorphism corresponds to thicknesses of 20- and 70-layer fundamental particles, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altaner, S.P. and Ylagan, R.F. (1997) Comparison of structural models of mixed-layer illite/smectite and reaction mechanisms of smectite illitization. Clays and Clay Minerals, 45, 517–533.

    Article  Google Scholar 

  • Árkai, P., Merriman, R.J., Roberts, B., Peacor, D.R., and Toth, M. (1996) Crystallinity, crystallite size and lattice strain of illite-muscovite and chlorite: Comparison of XRD and TEM data for diagenetic to epizonal pelites. European Journal of Mineralogy, 8, 1119—1137.

  • Bethke, C.M. and Altaner, S.P. (1986) Layer-by-layer mechanism of smectite illitization and application to a new rate law. Clays and Clay Minerals, 34, 136–145.

    Article  Google Scholar 

  • Cashman, K.V. and Ferry, J.M. (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization. III Metamorphic crystallization. Contributions to Mineralogy and Petrology, 99, 410–415.

    Google Scholar 

  • Dalla Torre, M., Livi, K.J.T., Veblen, D.R., and Frey, M. (1996) White K-mica evolution from phengite to muscovite in shales and shale matrix melange, Diablo Range, California. Contributions to Mineralogy and Petrology, 123, 390–405.

    Article  Google Scholar 

  • Drits, V.A. and Tchoubar, C. (1990). X-ray Diffraction by Disordered Lamellar Structures. Springer-Verlag, Berlin, 371 pp.

    Book  Google Scholar 

  • Drits, V.A., Eberl, D.D., and Środoń, J. (1997) XRD measurement of mean crystallite thickness of illite and illite/smectite: Reappraisal of the Kubier Index and the Scherrer Equation. Clays and Clay Minerals, 45, 461–475.

    Article  Google Scholar 

  • Drits, V.A., Eberl, D.D., and Środoń, J. (1998) XRD measurement of mean thickness, thickness distribution and strain for illite-smectite crystallites by Bertaut-Warren-Av-erbach technique. Clays and Clay Minerals, 46, 38–50.

    Article  Google Scholar 

  • Eberl, D.D. and Blum, A. (1993) Illite crystallite thickness by X-ray diffraction. I. Computer Applications to X-ray Powder Diffraction Analysis of Clay Minerals, Volume 5, R.C. Reynolds and J.R. Walker, eds., Clay Minerals Society, Boulder, Colorado, 124–153.

    Google Scholar 

  • Eberl, D. and Hower, J. (1976) Kinetics of illite formation. Geological Society of America Bulletin, 87, 1326–1330.

    Article  Google Scholar 

  • Eberl, D.D. and Srodon, J. (1988) Ostwald ripening and in-terparticle-diffraction effects for illite crystals. American Mineralogist, 73, 1335–1345.

    Google Scholar 

  • Eberl, D.D. and Velde, B. (1989) Beyond the Kübier index. Clay Minerals, 24, 571–577.

    Article  Google Scholar 

  • Eberl, D.D., Srodon, J., Lee, M., Nadeau, P.H., and Northrop, H.R. (1987) Sericite from Silverton caldera, Colorado: Correlation among structure, composition, origin, and particle thickness. American Mineralogist, 72, 914–934.

    Google Scholar 

  • Eberl, D.D., Drits, V.A., and Środoń, J. (1997) Measurement of illite crystallite thickness by XRD method of Bertaut-Warren-Averbach. I. Journées Scientifiques en l’honneur de V.A. Drits, Groupe Français des Argiles, Paris, 27–28.

    Google Scholar 

  • Eberl, D.D., Niiesh, R., Sucha, V., and Tsipursky, S. (1998a) XRD measurement of fundamental particle thickness by X-ray diffraction PVP-10 technique. Clays and Clay Minerals, 46, 89–97.

    Article  Google Scholar 

  • Eberl, D.D., Drits, V.A., and Środoń, J. (1998b) Deducing growth mechanisms for minerals from the shapes of crystal size distributions. American Journal of Science, 298, 499–533.

    Article  Google Scholar 

  • Ergun, S. (1968) Direct method for unfolding convolution products: Its application to X-ray scattering intensities. Journal of Applied Crystallography, 1, 19–23.

    Article  Google Scholar 

  • Frey, M. (1987). Low Temperature Metamorphism. Chapman & Hall, London, 351 pp.

    Google Scholar 

  • Hendricks, S.D. and Teller, E. (1942) X-ray interference in partially ordered layer lattices. Journal Chemical Physics, 10, 147–167.

    Article  Google Scholar 

  • Howard, S.A. and Preston, K.D. (1989) Profile fitting of powder diffraction patterns. I. Modern Powder Diffraction, Volume 20, D.L. Bish and J.E. Post, eds., Mineralogical Society of America, Washington, D.C. 217–275.

    Chapter  Google Scholar 

  • Jaboyedoff, M. (1999) Transformations des interstratifiés illite/smectite vers I’illite et la phengite: Un exemple dans la série carbonatée du domaine Briançonnais des Alpes suisses romandes. Ph.D. thesis, University Lausanne, Switzerland, 459 pp.

    Google Scholar 

  • Jaboyedoff, M. and Thélin, P. (1996) New data on the low-grade metamorphism in the Briançonnais domain of the Prealps, western Switzerland. European Journal of Mineralogy, 8, 577–592.

    Article  Google Scholar 

  • Jaboyedoff, M., Kübier, B., and Thélin, P. (1999) An empirical Scherrer equation for weakly swelling mixed-layer minerals, especially illite-smectite. Clay Minerals, 34, 601–617.

    Article  Google Scholar 

  • Jagodzinski, H. (1949) Eindimensionale Fehlordnung in Kristallen und ihr Einfluss auf Röntgeninterferenzen. I. Berechnung des Fehlordnungsgrades aus des Röntgenintensitäten. Acta Crystallographica, 2, 201–207.

    Article  Google Scholar 

  • Jiang, W.T., Peacor, D.R., Arkai, P., Toth, M., and Kim, J.W. (1997) TEM and XRD determination of crystallite size and lattice strain as a function of illite crystallinity in pelitic rocks. Journal of Metamorphic Geology, 15, 267–281.

    Article  Google Scholar 

  • Klug, H.P. and Alexander, L.E. (1974). X-ray Diffraction Procedures. J. Wiley and Sons, New York. 996 pp.

    Google Scholar 

  • Krumm, S. (1992) Illite als Indikator schwacher Metamorphose. Methodische Untersuchungen, regionale Anwendungen and Vergleiche mit anderen Parametern. Erlanger Geologische Abhandlungen, 120, 1–75.

    Google Scholar 

  • Kübier, B. (1964) Les argiles indicateurs de métamorphisme. Revue Institut Français du Pétrole, XIX(10), 1093–1113.

    Google Scholar 

  • Kübier, B. (1967) La cristallinité de l’illite et les zones tout à fait supérieures du métamorphisme. I. Etages tectoniques, Colloque de Neuchâtel 1966, Edition de la Bacon-nière, Neuchâtel, Switzerland. 105–121.

    Google Scholar 

  • Kübier, B. (1968) Evaluation quantitative du métamorphisme par cristallinité de l’illite. Bulletin Centre de Recherche Pau SNPA, 2, 385–397.

    Google Scholar 

  • Kübier, B. (1984) Les indicateurs des transformations physiques et chimiques dans la diagenèse, température et calorimétrie. I. Thermométrie et Barométrie Géologiques, M. Lagache, ed., Société Française de Minéralogie et Cristallographie, Paris, 489–596.

    Google Scholar 

  • Kübier, B. (1990) “Cristallinité” de l’illite et mixed-layer: Brève révision. Schweitzerische Mineralogische Petrographische Mitteilungen, 70, 89—93.

  • Lanson, B. (1990) Mise en évidence des mécanismes de transformation des interstratifiés illite/smectite au cours de la diagenèse. Ph.D. thesis, University Paris 6, Paris, 366 pp.

    Google Scholar 

  • Lanson, B. (1997) Decomposition of X-ray diffraction patterns (profile fitting): A convenient way to study clay minerals. Clays and Clay Minerals, 45, 132–146.

    Article  Google Scholar 

  • Lanson, B. and Kübier, B. (1994) Experimental determination of coherent scattering domain size distribution of natural mica-like phases with the Warren-Averbach technique. Clays and Clay Minerals, 42, 489–494.

    Article  Google Scholar 

  • Lanson, B. and Velde, B. (1992) Decomposition of X-ray diffraction patterns: A convenient way to describe complex I/S diagenetic evolution. Clays and Clay Minerals, 40, 629–643.

    Article  Google Scholar 

  • Li, G., Peacor, D.R., Buseck, P.R., and Arkai, P. (1998) Modification of illite-muscovite crystallite-size distributions by sample preparation for powder XRD analysis. Canadian Mineralogist, 36, 1435–1451.

    Google Scholar 

  • MacEwan, D.M.C. and Wilson, M.J. (1980) Interlayer and intercalation complexes of clay minerals. I. Crystal Structures of Clay Minerals and their X-ray Identification, G.W. Brindley and G. Brown, eds., Mineralogical Society, London, 197–248.

    Google Scholar 

  • Merriman, R.J. and Frey, M. (1999) Pattern of very low-grade metamorphism in metapelitic rocks. I. Low-Grade Metamorphism, M. Frey and D. Robinson, eds., Blackwell Science, Oxford, UK, 61–107.

    Google Scholar 

  • Merriman, R.J., Roberts, B., and Peacor, D.R. (1990) A transmission electron microscope study of white mica crystallite size distribution in mudstone to slate transitional sequence, North Wales, UK. Contribution to Mineralogy and Petrology, 106, 27–40.

    Article  Google Scholar 

  • Moore, D.M., and Reynolds, R.C. (1997). X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, 378 pp.

    Google Scholar 

  • Nieto, E. and Sanchez-Navas, A. (1994) A comparative XRD and TEM study of the physical meaning of the white mica “crystallinity” index. European Journal of Mineralogy, 6, 611–621.

    Article  Google Scholar 

  • Peacor, D.R. (1992) Diagenesis and low-grade metamorphism of shales and slates. I. Minerals and Reactions at Atomic Scale: Transmission Electron Microscopy, R.R. Buseck, ed., Mineralogical Society of America, Washington, D.C., 335–380.

    Chapter  Google Scholar 

  • Pevear, D.R. and Schuette, J.F. (1993) Inverting the NEW-MOD(c) X-ray diffraction forward model for clay minerals using genetic algorithms. I. Computer Applications to X-ray Powder Diffraction Analysis of Clay Minerals, Volume 5, R.C. Reynolds and J.R. Walker, eds., Clay Minerals Society, Boulder, Colorado, 20–41.

    Google Scholar 

  • Pytte, A.M. and Reynolds, R.C. (1989) The thermal transformation of smectite to illite. I. Thermal History of Sedimentary Basins Methods and Case Histories, N. Naeser and R.C. McCulioh, eds., Springer-Verlag, New York, 133–140.

    Chapter  Google Scholar 

  • Reynolds, R.C., Jr. (1980) Interstratified clay minerals. I. Crystal Structures of Clay Minerals and Their X-ray Identification, G.W. Brindley and G. Brown, eds., Mineralogical Society, London, 249–303.

    Google Scholar 

  • Reynolds, R.C., Jr. (1985). NEWMOD a computer program for the calculation of one-dimensional X-ray diffraction patterns of mixed-layered clays. R.C. Reynolds, Jr., 8 Brook Dr., Hanover, New Hampshire.

  • Reynolds, R.C., Jr. (1986) The Lorentz-polarization factor and preferred orientation in oriented clay aggregates. Clays and Clay Minerals, 34, 359–367.

    Article  Google Scholar 

  • Reynolds, R.C., Jr. (1988). NEWMOD3c for the calculation of one-dimensional X-ray diffraction patterns of mixed-layered clays containing three components. R.C. Reynolds, Jr., 8 Brook Dr., Hanover, New Hampshire.

  • Reynolds, R.C., Jr. (1989) Diffraction by small and disordered crystals. I. Modern Powder Diffraction, D.L. Bish and J.E. Post, eds., Mineralogical Society of America, Washington, D.C., 145–182.

    Chapter  Google Scholar 

  • Reynolds, R.C., Jr. and Reynolds, R.C., III (1996). NEWMOD for Windows a computer program for the calculation of one-dimensional diffraction patterns of mixed-layered clays. R.C., Reynolds, Jr., 8 Brook Dr., Hanover, New Hampshire.

  • Robinson, D., Warr, L.N., and Bevins, R.E. (1990) The illite ’crystallinity’ technique: A critical appraisal of its precision. Journal of Metamorphic Geology, 8, 333–344.

    Article  Google Scholar 

  • Scherrer, P. (1918) Bestimmung der grosse und inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten Gesellschaft Wissenschaft Göttingen, 26, 98–100.

    Google Scholar 

  • Spry, A. (1983). Metamorphic Textures. Pergamon International Libray, Oxford, UK, 352 pp.

    Google Scholar 

  • Srodon, J. and Eberl, D.D. (1984) Illite. I. Micas, S.W. Bailey, ed., Mineralogical Society of America. 495–544.

    Chapter  Google Scholar 

  • Srodon, J., Andreoli, C., Elsass, F., and Robert, M. (1990) Direct high-resolution transmission electron microscopic measurement of expandability of mixed-layer illite/smectite in bentonite rock. Clays and Clay Minerals, 38, 373–379.

    Article  Google Scholar 

  • Srodon, J., Elsass, F., McHardy, W.J., and Morgan, D.J. (1992) Chemistry of illite-smectite inferred from TEM measurements of fundamental particles. Clay Minerals, 27, 137–158.

    Article  Google Scholar 

  • Stokes, A.R. (1948) A numerical Fourier-analysis method for correction of widths and shapes of lines on X-rays powder photographs. Proceedings of the Physical Society, London, 61, 382–391.

    Article  Google Scholar 

  • Velde, B. and Vasseur, G. (1992) Estimation of the diagenetic smectite to illite transformation in time-temperature space. American Mineralogist, 77, 9–10.

    Google Scholar 

  • Wang, H., Stern, W.B., and Frey, M. (1995) Deconvolution of the X-ray “Illite” 10 Å complex: A case study of Helvetic sediments from eastern Switzerland. Schweitzerische Mineralogische Petrographischee Mitteilungen, 75, 187–199.

    Google Scholar 

  • Warr, L.N. and Rice, H.N. (1994) Interlaboratory standardization and calibration of clay mineral crystallinity and crystallite size data. Journal of Metamorphic Geology, 12, 141–152.

    Article  Google Scholar 

  • Warr, L.N. and Nieto, E. (1998) Crystallite thickness and defect density of phyllosilicates in low temperature metamorphic pelites: A TEM and XRD study of clay-mineral crystallinity-index standards. Canadian Mineralogist, 36, 1453–1474.

    Google Scholar 

  • Warren, B.E. and Averbach, B.L. (1950) The effect of cold work distortion on X-ray patterns. Journal of Applied Physics, 21, 595–599.

    Article  Google Scholar 

  • Watanabe, T. (1988) The structural model of illite/smectite mterstratified minerals and the diagram for its identification. Clay Sciences, 1, 97–114.

    Google Scholar 

  • Weaver, E.W. (1960) Possible uses of clay minerals in search for oil. Bulletin of the American Association of Petroleum Geologists, 44, 1505–1518.

    Google Scholar 

  • Weber, E., Dunoyer de Segonsac, G., and Economou, C. (1976) Une nouvelle expression de la “cristallinité” de l’illite et des micas. Notion “d’épaisseur apparente” des cristallites. Compte Rendus Sommaires Société Géologique de France, 5, 225–227.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jaboyedoff.

Additional information

Deceased, 16 September 2000

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaboyedoff, M., Bussy, F., Kübler, B. et al. Illite “Crystallinity” Revisited. Clays Clay Miner. 49, 156–167 (2001). https://doi.org/10.1346/CCMN.2001.0490205

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2001.0490205

Key Words

Navigation