Skip to main content
Log in

Diffuse Reflectance Spectra of Al Substituted Goethite: A Ligand Field Approach

  • Published:
Clays and Clay Minerals

Abstract

Previous investigations of goethite revealed a substantial variation of color and diffuse reflectance spectra (DRS) in the extended visible range (350–2200 nm). To better understand the causes of this variability and to assess the potential of DRS as a mineralogical tool, we investigated the DRS of pure and Al-substituted goethite, α-Fe1−xAlxOOH with x from 0 to 0.33, and mean crystal lengths (MCL) from 170 to 1800 nm. The strongly overlapping ligand field bands were extracted by fitting the single-electron transitions 6A14T1, 6A14T2, 6A1 → (4E; 4A1), and 6A14E(4D) as functions of the ligand field splitting energy, 10 Dq, and the interelectronic repulsion parameters, Racah-B and -C. With x increasing from 0 to 0.33, 6A14T1 decreased from 10,590 to 10,150 cm−1 (944 to 958 nm), and 6A14T2 decreased from 15,310 to 14,880 cm−1 (653 to 672 nm), while 10 Dq increased from 15,770 to 16,220 cm−1. From the change of 10 Dq we calculated a decrease of the Fe-(O,OH) distances from 202.0 to 200.9 pm (−0.5%). This decrease is smaller than the average decrease of all (Al,Fe)-(O,OH) distances (−1.8%) calculated from the change of the unit-cell lengths (UCL). That is, there remains a substantial difference in size between the larger Fe- and the smaller Al-occupied octahedra in the solid solution which may indicate the existence of diaspore clusters within the goethite structure. The increasing strain in the crystal structure due to the size mismatch and limited contractibility of the oxygen cage around Fe may be the primary reason for Al substitution being restricted to x < 0.33. The bands 6A1 → (4E; 4A1) and 6A14E(4D) did not shift, indicating a constant covalency of the Fe-(O,OH) bonds with B = 628 cm−1 and C = 5.5B. Whereas variation of band energies could be explained in terms of the Fe-(O,OH) ligand field, the variation of color and band intensities was mainly determined by crystal size. Although our study confirmed the potential of DRS for mineralogical investigations, there is still a gap between the fundamental theory and the explanation of some spectral features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bedidi, A. and Cervelle, B. (1993) Diffusion de la lumière par des particules minérales. Cahiers ORSTOM Serie Pedologie, 28, 7–14.

    Google Scholar 

  • Bedidi, A., Cervelle, B., Madeira, J., and Pouget, M. (1992) Moisture effects on visible spectral characteristics of lat-eritic soils. Soil Science, 153, 129–141.

    Article  Google Scholar 

  • Bethe, H. (1929) Termaufspaltung in Kristallen Annalen der Physik, 3, 133–206.

    Article  Google Scholar 

  • Bishop, J.L. and Murad, E. (1996) Schwertmannite on Mars? Spectroscopic analyses of schwertmannite, its relationship to other ferric minerals, and its possible presence in the surface material on Mars. In Mineral Spectroscopy: A Tribute to Roger G. Burns, Special Publication: 5, M.D. Dyar, C. McCammon, and M.W. Schaefer, eds., The Geochemical Society, Huston, Texas, 400 pp.

    Google Scholar 

  • Brockes, A. (1964) Der Zusammenhang von Farbstärke und Teichengröße von Buntpigmenten nach der Mie-Theorie. Optik, 21, 550–566.

    Google Scholar 

  • Buckingham, W.F. and Sommer, S.E. (1983) Mineralogical characterization of rock surfaces formed by hydrothermal alteration and weathering—Application to remote sensing. Economic Geology, 78, 664–674.

    Article  Google Scholar 

  • Burns, R.G. (1993) Mineralogical Applications of Crystal Field Theory. Cambridge Topics in Mineral Physics and Chemistry, 5, A. Putnis and R.C. Lieberman, eds., Cambridge University Press, 551 pp.

  • Carlson, L. (1995) Aluminum substitution in goethite in lake ore. Bulletin of the Geological Society of Finland, 67, 19–28.

    Article  Google Scholar 

  • Cornell, R.M. and Schwertmann, U. (1996) The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses. VCH Verlagsgesellschaft, Weinheim, 573 pp.

    Google Scholar 

  • Fernandez, R.N. and Schulze, D.G. (1987) Calculation of soil color from reflectance spectra. Soil Science Society of America Journal, 51, 1277–1282.

    Article  Google Scholar 

  • Fitzpatrick, R.W. and Schwertmann, U. (1982) Al-substituted goethite—An indicator of pedogenic and other weathering environments in South Africa. Geoderma, 27, 335–347.

    Article  Google Scholar 

  • Forsyth, J.B., Hedley, I.G., and Johnson, C.E. (1968) The magnetic structure and hyperfine field of geothite (α-Fe-OOH). Journal of Physical Chemistry C Series 2, 1, 179–188.

    Google Scholar 

  • Golden, D.C. (1978) Physical and chemical properties of aluminum-substituted goethite. Dissertation Abstract 7820029, Ph.D. thesis, North Carolina State University.

    Google Scholar 

  • Hapke, B. (1981) Bidirectional reflectance spectroscopy. 1. Theory. Journal of Geophysical Research, 86, 3039–3054.

    Article  Google Scholar 

  • Hazemann, J.L., Bérar, J.E, and Manceau, A. (1991) Rietveld studies of the aluminium-iron substition in synthetic goethite. Materials Science Forum, 79-82, 821–825.

    Article  Google Scholar 

  • Hill, F.J. (1979) Crystal structure refinement and electron density distribution in diaspore. Physics and Chemistry of Minerals, 5, 179–200.

    Article  Google Scholar 

  • Kosmas, C.S., Curi, N., Bryant, R.B., and Franzmeier, D.P. (1984) Characterization of iron oxide minerals by second-derivative visible spectroscopy. Soil Science Society of America Journal, 48, 401–405.

    Article  Google Scholar 

  • Kosmas, C.S., Franzmeier, D.P., and Schulze, D.G. (1986) Relationship among derivative spectroscopy, color, crystallite dimensions, and Al substitution of synthetic geothites and hematites. Clays and Clay Minerals, 34, 625–634.

    Article  Google Scholar 

  • Krasovska, O.V., Winkler, B., Krasovskii, E.E., Yaresko, A.N., Antonov, V.N., and Langer, N. (1997) Ab initio calculation of the pleochroism of fayalite. American Mineralogist, 82, 672–676.

    Article  Google Scholar 

  • Lever, A.B.P. (1984) Inorganic Electronic Spectrocopy. Studies in Physical and Theoretical Chemistry, 33. Elsevier Publishing Company, Amsterdam, 830 pp.

  • Malengreau, N., Muller, J.-P., and Calas, G. (1994) Fe-speciation in kaolins: A diffuse reflectance study. Clays and Clay Minerals, 42, 137–147.

    Article  Google Scholar 

  • Malengreau, N., Bedidi, A., Muller, J.-P., and Herbillon, A.J. (1996) Spectroscopic control of iron oxide dissolution in two ferralitic soils. European Journal of Soil Science, 47, 13–20.

    Article  Google Scholar 

  • Manceau, A. and Combes, J.M. (1988) Structure of Mn and Fe oxides and oxyhydroxides: A topological approach by EXAFS. Physics and Chemistry of Minerals, 15, 283–295.

    Article  Google Scholar 

  • Marco de Lucas, M.C., Rodriguez, E., Prieto, C., Verdaguer, M., and Güdel, H.U. (1995) Local structure determination of Mn2+ in the ABCl3:Mn2+ chloroperovskites by EXAFS and by optical spectroscopy. Journal of Physics and Chemistry of Solids, 56, 995–1001.

    Article  Google Scholar 

  • Marusak, L.A., Messier, R., and White, W.B. (1989) Optical absorption spectrum of hematite, α-Fe2O3 near IR to UV. Journal of Physics and Chemistry of Solids, 41, 981–984.

    Article  Google Scholar 

  • Melville, M.D. and Atkinson, G. (1985) Soil colour: Its measurement and its designation in models of uniform colour space. Journal of Soil Science, 36, 495–512.

    Article  Google Scholar 

  • Mie, G. (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik, 25, 377–445.

    Article  Google Scholar 

  • Morris, R.V., Schulze, D.G., Lauer, H.V., Agresti, D.G., and Shelfer, T.D. (1992) Reflectivity (visible and near IR), Mössbauer, static magnetic, and X-ray diffraction properties of Aluminum-substituted hematites. Journal of Geophysical Research, 97, 10257–10266.

    Article  Google Scholar 

  • Morris, R.V., Golden, D.C., and Bell, J.F., III (1997) Low-temperature reflectivity spectra of red hematite and the color of Mars. Journal of Geophysical Research, 102, 9125–9131.

    Article  Google Scholar 

  • Mustard, J.F. and Hays, J.E. (1997) Effects of hyperfine particles on relectance spectra from 0.3 to 2.5 u.m. Icarus, 125, 145–163.

    Article  Google Scholar 

  • Orgel, L.E. (1952) The effects of crystal fields on the properties of transition metal ions. Journal of the Chemical Society, 4756–4761.

    Google Scholar 

  • Orgel, L.E. (1957) Ion compresion and the colour of ruby. Nature, 179, 1348.

    Article  Google Scholar 

  • Reinen, D. (1969) Ligand-field spectroscopy and chemical bonding in Cr3+-containing solids. In Structure and Bonding 6, P. Hemmerich, et al., eds., Springer-Verlag, New York, 30–51.

    Chapter  Google Scholar 

  • SAS Institute Inc. (1988) SAS/STAT User’s Guide. Cary, North Carolina, 1028 pp.

    Google Scholar 

  • Sayers, D.E. and Bunker, B.A. (1988) Data Analysis. In X-Ray Absorption—Principles, Applications, Techniques of EXAFS, SEXAFS and XANES. Chemical Analysis, D.C. Koningsberger and R. Prins, eds., John Wiley & Sons, New York, 211–253.

    Google Scholar 

  • Scheinost, A.C., Chavernas, A., Barrón, V., and Torrent, J. (1998) Use and limitations of second-derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantify Fe oxide minerals in soils. Clays and Clay Minerals, 46, 528–537.

    Article  Google Scholar 

  • Schugar, H.J., Rossman, G.R., Thibeault, J., and Gray, H.B. (1970) Simultaneous pair electronic excitations in binuclear iron (III) complex. Chemical Physics Letters, 6, 26–28.

    Article  Google Scholar 

  • Schulze, D.G. (1984) The influence of aluminum on iron oxides. VIII. Unit cell dimensions of Al-substitued geoethites and estimation of Al from them. Clays and Clay Minerals, 32, 36–44.

    Article  Google Scholar 

  • Schulze, D.G. and Schwertmann, U. (1984) The influence of aluminum on iron oxides: X. Properties of Al-substituted goethites. Clay Minerals, 19, 521–529.

    Article  Google Scholar 

  • Schulze, D.G. and Schwertmann, U. (1987) The influence of aluminum on iron oxides: XIII. Properties of goethites syn-thesised in 0.3 M KOH at 25°C. Clay Minerals, 22, 83–92.

    Article  Google Scholar 

  • Schwertmann, U. (1991) Relations between iron oxides, soil color and soil formation. In Soil Color, J.M. Bigham and E.J. Ciolkosz, eds., Soil Science Society of America Special Publication 31, Madison, Wisconsin, 51–69.

    Google Scholar 

  • Schwertmann, U. and Carlson, L. (1994) Aluminum substitution of iron oxides: XVII. Unit cell parameters and aluminum substitution of natural goethites. Soil Science Society of America Journal, 58, 256–261.

    Article  Google Scholar 

  • Schwertmann, U., Gasser, U., and Sticher, H. (1989) Chromium-for-iron substitution in synthetic goethites. Geochim-ica et Cosmochimica Acta, 53, 1293–1297.

    Article  Google Scholar 

  • Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A 32, 751–767.

    Article  Google Scholar 

  • Sherman, D.M. (1985) Electronic structures of Fe3 coordination sites in iron oxides: applications to spectra, bonding, and magnetism. Physics and Chemistry of Minerals, 12, 161–175.

    Article  Google Scholar 

  • Sherman, D.M. and Waite, T.D. (1985) Electronic spectra of Fe3 oxides and oxide hydroxides in the near IR to near UV. American Mineralogist, 70, 1262–1269.

    Google Scholar 

  • Sherman, D.M., Burns, R.G., and Burns, V.M. (1982) Spectral characteristics of the iron oxides with application to the martian bright region mineralogy. Journal of Geophysical Research, 87, 10169–10180.

    Article  Google Scholar 

  • Singer, R.B. (1982) Spectral evidence for the mineralogy of high-albedo soils and dust on Mars. Journal of Geophysical Research, 87, 10159–10168.

    Article  Google Scholar 

  • Sunshine, J.M., Pieters, C.M., and Pratt, S.E (1990) Deconvolution of mineral absorption bands: An improved approach. Journal of Geophysical Research, 95, 6955–6966.

    Article  Google Scholar 

  • Tossell, J.A. and Vaughan, D.J. (1974) The electronic structure of rutile, wustite, and hematite from molecular orbital calculations. American Mineralogist, 59, 319–334.

    Google Scholar 

  • Townsend, T.E. (1987) Discrimination of iron alteration minerals in visible and near-infrared reflectance data. Journal of Geophysical Research, 92, 1441–1454.

    Article  Google Scholar 

  • Wendlandt, W.W. and Hecht, H.G. (1966) Reflectance Spectroscopy. John Wiley & Sons, New York, 298 pp.

    Google Scholar 

  • Winter, G. (1979) Anorganische Pigmente: Disperse Festkör-per mit technisch verwertbaren optischen und magnetischen Eigenschaften. Fortschritte der Mineralogie, 57, 172–202.

    Google Scholar 

  • Wolska, E. and Schwertmann, U. (1993) The mechanism of solid solution formation between goethite and diaspore. Neues Jahrbuch für Mineralogie Monatshefte, 5, 213–223.

    Google Scholar 

  • Wyszecki, G. and Stiles, W.S. (1982) Color Science: Concepts and Methods, Quantitative Data and Formulae. John Wiley and Sons, New York, 950 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheinost, A.C., Schulze, D.G. & Schwertmann, U. Diffuse Reflectance Spectra of Al Substituted Goethite: A Ligand Field Approach. Clays Clay Miner. 47, 156–164 (1999). https://doi.org/10.1346/CCMN.1999.0470205

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1999.0470205

Key Words

Navigation