Skip to main content
Log in

Characterization of Octahedral Substitutions in Kaolinites Using Near Infrared Spectroscopy

  • Published:
Clays and Clay Minerals

Abstract

Fourier transform infrared (FTIR) spectroscopy investigations in the near infrared (N1R) region of synthetic and natural kaolinites with various octahedral substitutions have been carried out in order to elucidate the relationships between the substituted cations and specific features of the NIR spectra. The combination modes of the OH stretching and bending vibrations characterizing Fe(III), Ga(III) and Cr(III) octahedral substitutions are identified in the NIR region at 4466, 4498 and 4474 cm-1, respectively, and the first overtones of the OH stretching vibrations at 7018, 7018 and 6986 cm-1, respectively. As far as we know, the bands of kaolinites containing Ga(III) or Cr(III) have not been reported yet. For both Ga(III) and Cr(III), the NIR observations explain why the bending vibration bands of AlGaOH and AlCrOH groups are not observed in the middle infrared (MIR) region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alpert NL, Keiser WE, Szymanski HA. 1964. IR—Theory and practice of infrared spectroscopy. New York: Plenum Pr. 380 p.

    Google Scholar 

  • Bell VBA, Citro VR, Hodge GD. 1991. Effect of pellet pressing on the infrared spectrum of kaolinite. Clays Clay Miner 39:290–292.

    Article  Google Scholar 

  • Besson G, Drits VA. 1997. Refined relationships between chemical composition of dioctahedral fine-grained micaceous minerals and their infrared spectra within the OH stretching region. Part II: The main factors affecting OH vibrations and quantitative analysis. Clays Clay Miner 45: 170–183.

    Article  Google Scholar 

  • Bishop JL, Pieters CM, Edwards JO. 1994. Infrared spectroscopic analyses on the nature of water in montmorillonite. Clays Clay Miner 42:702–716.

    Article  Google Scholar 

  • Brookins DG. 1973. Chemical and X-ray investigation of chromiferous kaolinite (“miloschite”) from The Geysers, Sonoma County, California. Clays Clay Miner 21:421–422.

    Article  Google Scholar 

  • Cariati F, Erre L, Micera G, Piu P, Gessa C. 1981. Water molecules and hydroxyl groups in montmorillonites as studied by near infrared spectroscopy. Clays Clay Miner 29:157–159.

    Article  Google Scholar 

  • Cariati F, Erre L, Micera G, Piu P, Gessa C. 1983a. Polarization of water molecules in phyllosilicates in relation to exchange cations as studied by near infrared spectroscopy. Clays Clay Miner 31:155–157.

    Article  Google Scholar 

  • Cariati F, Erre L, Micera G, Piu P, Gessa C. 1983b. Effects of layer charge on the near infrared spectra of water molecules in smectites and vermiculites. Clays Clay Miner 31: 447–449.

    Article  Google Scholar 

  • Cases JM, Cunin P, Grillet Y, Poinsignon C, Yvon J. 1986. Methods of analyzing morphology of kaolinite: Relations between crystallographic and morphological properties. Clay Miner 21:55–68.

    Article  Google Scholar 

  • Crowley JK, Vergo N. 1988. Near-infrared reflectance spectra of mixtures of kaolin-group minerals: Use in clay mineral, studies. Clays Clay Miner 36:310–316.

    Article  Google Scholar 

  • Decarreau A, Grauby O, Petit S. 1992. The actual distribution of octahedral cations in 2:1 clay minerals: Results from clay synthesis. Appl Clay Sci 7:147–167.

    Article  Google Scholar 

  • Delineau T, Allard T, Muller JP, Barres O, Yvon J, Cases JM. 1994. FTIR reflectance vs. EPR studies of structural iron in kaolinites. Clays Clay Miner 42:308–320.

    Article  Google Scholar 

  • Gaite JM, Mosser C. 1993. Experimental and modelized electron paramagnetic resonance spectra of Cr(III) in kaolinites. J Phys Condens Matter 5:4929–4934.

    Article  Google Scholar 

  • Hlavay J, Jonas K, Elek S, Inczedy J. 1977. Characterization of the particle size and the crystallinity of certain minerals by infrared spectrophotometry and other instrumental methods—I. Investigations on clay minerals. Clays Clay Miner 25:451–456.

    Article  Google Scholar 

  • Hunt GR, Salisbury JW. 1970. Visible and infrared spectra of minerals and rocks: I. Silicate minerals. Modern Geol 1: 283–300.

    Google Scholar 

  • Hunt GR, Salisbury JW, Lenhoff CJ. 1973. Visible and infrared spectra of minerals and rocks: VI. Additional silicate. Modern Geol 4:85–106.

    Google Scholar 

  • Jepson WB, Rowse JB. 1975. The composition of kaolinite. An electron microscope microprobe study. Clays Clay Miner 23:310–317.

    Article  Google Scholar 

  • Kato E, Kanaoka S, Inagaki S. 1977. Infrared spectra of kaolin minerals in OH region (I); on the glass slide method for the measurement of the infrared spectra in OH region of clay minerals. Rept Govt Industr Agoya 26:203–210.

    Google Scholar 

  • De Kimpe C, Kodama H, Rivard R. 1981. Hydrothermal formation of kaolinite material from aluminosilicate gels. Clays Clay Miner 29:446–450.

    Article  Google Scholar 

  • Lindberg JD, Snyder DG. 1972. Diffuse reflectance spectra of several clay minerals. Am Mineral 57:485–493.

    Google Scholar 

  • Madejová J, Komadel P, Cícel B. 1994. Infrared study of octahedral site populations in smectites. Clay Miner 29: 319–326.

    Article  Google Scholar 

  • Maksimovic Z, Brindley GW. 1980. Hydrothermal alteration of a serpentinite near Takovo, Yugoslavia, to chromium-bearing illite/smectite, kaolinite, tosudite, and halloysite. Clays Clay Miner 28:295–302.

    Article  Google Scholar 

  • Maksimovic Z, White JL. 1973. Infrared study of chromium-bearing halloysites. In: Serratosa JM, editor. Proc Int Clay Conf.; Madrid; 1972. Madrid: Div Ciencias, CSIC. p 61–73.

    Google Scholar 

  • Maksimovic Z, White JL, Logar M. 1981. Chromium-bearing dickite and chromium-bearing kaolinite from Teslic, Yugoslavia. Clays Clay Miner 29:213–218.

    Article  Google Scholar 

  • Martin F, Petit S, Decarreau A, Ildefonse Ph, Grauby O, Bé-ziat D, de Parseval Ph, Noack Y. 1998. Ga/Al substitutions in synthetic kaolinites and smectites. Clay Miner 33:231–241.

    Article  Google Scholar 

  • Mendelovici E., Yariv SH, Villalba R. 1979. Iron-bearing kaolinite in Venezuelan laterite. I. Infrared spectroscopy and chemical dissolution evidence. Clay Miner 14:323–331.

    Article  Google Scholar 

  • Mosser C, Petit S, Mestdagh M. 1993. ESR and IR evidences for chromium in kaolinites. Clay Miner 28:353–364.

    Article  Google Scholar 

  • Muller JP, Calas G. 1989. Tracing kaolinites through their defect centers; kaolinite paragenesis in a laterite (Cameroon). Econ Geol 84:694–707.

    Article  Google Scholar 

  • Petit S, Decarreau A. 1990. Hydrothermal (200 °C) synthesis and crystal chemistry of iron-rich kaolinites. Clay Miner 25.181–196.

    Article  Google Scholar 

  • Petit S, Decarreau A, Mosser C, Ehret G, Grauby O. 1995. Hydrothermal synthesis (250 °C) of copper-substituted kaolinites. Clays Clay Miner 43:482–494.

    Article  Google Scholar 

  • Petit S, Robert JL, Decarreau A, Besson G, Grauby O, Martin F. 1995. Apport des méthodes spectroscopiques à la car-actérisation des phyllosilicates 2:1. Bull Elf Aquitaine Prod, 19.1:119–147.

    Google Scholar 

  • Pontual S, Cocks T. 1994. The Pirna II: A new technique for field-based alteration mapping. The AusIMM Annual Conference, Darwin. p 393–398.

    Google Scholar 

  • Post JL, Noble PN. 1993. The near-infrared combination band frequencies of dioctahedral smectites, micas, and illites. Clays Clay Miner 41:639–644.

    Article  Google Scholar 

  • Rengasamy P. 1976. Substitution of iron and titanium in kaolinites. Clays Clay Miner 24:264–266.

    Article  Google Scholar 

  • Robert JL, Kodama H. 1988. Generalization of the correlations between hydroxyl-stretching wavenumbers and composition of micas in the system K2O-MgO-Al2O3-SiO2-H2O: A single model for trioctahedral and dioctahedral micas. Am J Sci 288-A:199–212.

    Google Scholar 

  • Singh B, Gilkes RJ. 1991. Weathering of a chromian mus-covite to kaolinite. Clays Clay Miner 39:571–579.

    Article  Google Scholar 

  • Stubican V, Roy R. 1961. A new approach of assignment of infra-red absorption bands in layer-structure silicates. Z Kristall Bd 115, S:200–214.

    Article  Google Scholar 

  • Tomura S, Shibasaki Y, Mizuta H, Kitamura M. 1985. Growth conditions and genesis of spherical and platy kaolinite. Clays Clay Miner 33:200–206.

    Article  Google Scholar 

  • Vedder W. 1964. Correlations between infrared spectrum and chemical composition of mica. Am Mineral 49:736–768.

    Google Scholar 

  • Weaver CE. 1976. The nature of TiO2 in kaolinite. Clays Clay Miner 24:215–218.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petit, S., Madejová, J., Decarreau, A. et al. Characterization of Octahedral Substitutions in Kaolinites Using Near Infrared Spectroscopy. Clays Clay Miner. 47, 103–108 (1999). https://doi.org/10.1346/CCMN.1999.0470111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1999.0470111

Key Words

Navigation