Skip to main content
Log in

Stability of n-Butylammonium Vermiculite in Powder and Flake Forms

  • Published:
Clays and Clay Minerals

Abstract

Interaction between n-butylammonium (BA) chloride and vermiculite from Santa Olalla (Spain) has been studied in large flake (5 × 5 × 0.1 mm) or ground powder (≤80 µm) samples. The differences in adsorption and decomposition of BA ions in both particle sizes have been established. In the interlamellar space, the BA ion remains unaltered in powder samples, but is degraded in flakes. The experimental results suggest decomposition of the BA in the interlamellar space of vermiculite flakes by breaking of the C-N bond. The degradation of BA takes place over a short period. The variety with BA in the interlamellar space is transformed into a new one, due to the degradation of alkylammonium. The transformation occurs through an interstratified phase formed between BA-vermiculite and NH4-vermiculite, and finally a phase appears in which only ammonium is present in the interlamellar space. Due to the many industrial applications of alkylammonium-clays, determination of the stability of alkylammonium in the interlamellar space of clay minerals is of great importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlrichs JL, Fraser AR, Russell JD. 1972. Interaction of ammonia with vermiculite. Clay Miner 9:263–273.

    Article  Google Scholar 

  • Boyd SA, Shaobai S, Lee JF, Mortland MM. 1988. Penta-chlorophenol sorption by organo-clays. Clays Clay Miner 36:125–130.

    Article  Google Scholar 

  • Chaussidon J, Calvet R. 1965. Evolution of amine cations adsorbed on montmorillonite with dehydration of the mineral. J Phys Chem 69:2265–2268.

    Article  Google Scholar 

  • Chou CC, McAtee JL Jr. 1969. Thermal decomposition of organoammonium compound exchanged into montmorillonite and hectorite. Clays Clay Miner 17:339–346.

    Article  Google Scholar 

  • Crawford RJ, Smalley MV, Thomas RK. 1991. The effect of uniaxial-stress on the swelling of n-butylammonium vermiculite. Adv Colloid Interface Sci 34:537–560.

    Article  Google Scholar 

  • de la Calle C, Suquet H, Pons CH. 1988. Stacking order in a Mg-vermiculite. Clays Clay Miner 36:481–490.

    Article  Google Scholar 

  • de la Calle C, Tejedor MI, Pons CH. 1996. Evolution of ben-zylammonium-vermiculite and ornithine-vermiculite intercalates. Clays Clay Miner 44:68–76.

    Article  Google Scholar 

  • Durand D, Pelet R, Fripiat JL. 1972. Alkylammonium decomposition on montmorillonite surfaces in an inert atmosphere. Clays Clay Miner 20:21–35.

    Article  Google Scholar 

  • Fan Y, Solin SA, Kim H, Pinnavaia TJ, Newmann DS. 1992. Elastic and inelastic neutron scattering study of hydroge-nated and deuterated trimethylammonium pillared vermiculite clays. J Chem Phys 96:7064–7071.

    Article  Google Scholar 

  • Farmer VC. 1974. The infrared spectra of minerals. London: Mineral Soc. 539 p.

    Book  Google Scholar 

  • Frenkel M, Solomon DH. 1977. The decomposition of organic amines on montmorillonite under ambient conditions. Clays Clay Miner 25:463–464.

    Article  Google Scholar 

  • Garret WG, Walker GF. 1962. Swelling of some vermiculite-organic complexes in water. In: Swineford A, editor. Clays Clay Miner, Proc 9th Nat Conf; 1960; West Lafayette, IN. New York: Pergamon Pr. p 557–567.

    Google Scholar 

  • Ghabru SK, Mermut AR, St Arnaud RJ. 1989. Layer-charge and cation-exchange characteristics of vermiculite (weathered biotite) isolated from a Gray Luvisol in northeastern Saskatchewan. Clays Clay Miner 37:164–172.

    Article  Google Scholar 

  • González-Carreño T, Rausell-Colom JA, Serratosa JM. 1977. Complexes vermiculite-alkylammonium. Evidence of interaction of terminal -CH3 groups with the silicate surface. Proc 3rd Europ Clay Conf; Oslo, p 73–74.

    Google Scholar 

  • González-García F, García-Ramos G. 1960. Procesos de génesis y degradación de vermiculita: Yacimiento de Santa Olalla (Huelva). I. Description del yacimiento y toma de muestras. Anal Edaf Agrobiol 7- 8:381–398.

    Google Scholar 

  • Johns WD, Sen Gupta PK. 1967. Vermiculite-alkylammonium complexes. Am Mineral 52:1706–1724.

    Google Scholar 

  • Jordan JW. 1949. Organophilic bentonites. I. Swelling in organic liquids. J Phys Colloid Chem 53:294–306.

    Article  Google Scholar 

  • Justo A. 1984. Estudio fisicoquímico y mineralógico de las vermiculitas de Andalucfa y Badajoz [Ph.D. thesis]. Sevilla, Spain: Univ of Sevilla. 407 p.

    Google Scholar 

  • Justo A, Maqueda C, Pérez-Rodríguez JL. 1986. Estudio de vermiculitas de Andalucía y Badajoz. Bol Soc Esp Miner 9:123–129.

    Google Scholar 

  • Laby RH, Walker GF. 1970. Hydrogen bonding in primary alkylammonium-vermiculite complexes. J Phys Chem 74: 2369–2373.

    Article  Google Scholar 

  • Lagaly G. 1994. Layer charge determination by alkylammonium ions. In: Mermut AR, editor. Layer charge characteristics of 2:1 silicate clay minerals. CMS workshop lectures, vol. 6. Boulder, CO: Clay Miner Soc. p 1–46.

    Google Scholar 

  • Lagaly G, Weiss A. 1969. Determination of the layer charge in mica-type layer silicates. In: Heller-Kallai L, editor. Proc Int Clay Conf; 1969; Tokyo. Jerusalem: Israel Univ Pr. p 61–80.

    Google Scholar 

  • Lee S, Solin SA. 1991. X-ray study of the intercalant distribution in mixed alkylammonium pillared clay. Phys Rev B: Condens Mater H 3:12012–12018.

    Article  Google Scholar 

  • MacEwan DMC, Ruiz-Amil A, Brown G. 1961. Interstratified clay minerals. In: Brown G, editor. The X-ray identification and crystal structures of clay minerals. London: Mineral Soc. p 393–445.

    Google Scholar 

  • Marín-Rubí JA, Rausell-Colom JA, Serratosa JM. 1974. Infrared absorption and X-ray diffraction study of butylam-monium complexes of phyllosilicates. Clays Clay Miner 22:87–90.

    Article  Google Scholar 

  • McCarney J, Smalley MV. 1995. Electron-microscopy study of n-butylammonium vermiculite swelling. Clay Miner 30: 187–194.

    Article  Google Scholar 

  • Mermut AR. 1993. Layer charge characteristics of 2:1 silicate clay minerals. CMS workshop lectures, vol. 6. Boulder, CO: Clay Miner Soc. 134 p.

  • Mermut AR. 1994. Problems associated with layer charge characterization of 2:1 phyllosilicates. In: Mermut AR, editor. Layer charge characteristics of 2:1 silicate clay minerals. CMS workshop lectures, vol. 6. Boulder, CO: Clay Miner Soc. p 105–122.

    Google Scholar 

  • Michel E, Weiss A. 1957. Ueber den Einfluss von Wasser-stoffbruecken-bindungen auf ein-und zweidimensionale innerkristalline Quellungsvorgaenge. In: Hadzi D, editor. Hydrogen bonding. New York: Pergamon Pr. p 495–508.

    Google Scholar 

  • Morillo E, Pérez-Rodriguez JL, Maqueda C. 1990. Decomposition of alkylammonium cations adsorbed on vermicu-lite under ambient conditions. Appl Clay Sci 5:183–187.

    Article  Google Scholar 

  • Mortland MM, Fripiat JJ, Chaussidon J, Uytterhoeven JB. 1963. Interaction between ammonia and the expanding lattices of montmorillonite and vermiculite. J Phys Chem 67: 248–258.

    Article  Google Scholar 

  • Mortland MM, Raman KV. 1968. Surface acidity of smectites in relation to hydration, exchangeable cation, and structure. Clays Clay Miner 16:393–398.

    Article  Google Scholar 

  • Mortland MM, Shaobai S, Boyd SA. 1986. Clay organic complexes as adsorbents for phenols and chlorophenols. Clays Clay Miner 34:581–585.

    Article  Google Scholar 

  • Pérez-Rodriguez JL, Morillo E, Hermosin MC. 1985. Interaction of chlordimeform with a vermiculite-decylammo-nium complex in aqueous and butanol solutions. Miner Pe-trogr Acta 29-A: 155–162.

    Google Scholar 

  • Pérez-Rodríguez JL, Morillo E, Maqueda C. 1988. Decomposition of alkylammonium cations intercalated in vermiculite. Clay Miner 23:379–390.

    Article  Google Scholar 

  • Rausell-Colom JA, Saez-Auñón J, Pons CH. 1989. Vermiculite gelation: Structural and textural evolution. Clay Miner 24:459–478.

    Article  Google Scholar 

  • Reichenbach HG, Beyer J. 1994. Dehydration and rehydration of vermiculite I. Phlogopitic Mg-vermiculite. Clay Miner 29:327–340.

    Article  Google Scholar 

  • Robert M, Ranger J, Malia PB, Tessier D, Pérez-Rodríguez JL. 1987. Variation in microorganization and properties of Santa Olalla vermiculite with decreasing size. In: Galán E, Pérez-Rodríguez JL, Cornejo J, editors. 6th Meet European Clay Groups. Euroclay ’87; 1987; Seville, Spain. Seville: Spanish Clay Soc. p 456–458.

    Google Scholar 

  • Ruiz-Amil A, Aragón de la Cruz F, Vila E, Ruiz-Conde A. 1992. Study of a material from Libby, Montana, containing vermiculite and hydrobiotite: Intercalation with aliphatic amines. Clay Miner 27:257–263.

    Article  Google Scholar 

  • Ruiz-Amil A, Ramírez-García A, MacEwan DMC. 1967. X-ray diffraction curves for the analysis of interstratified structures. Edinburgh: Volturna Pr. 38 p.

    Google Scholar 

  • Ruiz-Conde A, Ruiz-Amil A, Pérez-Rodríguez JL, Sánchez-Soto PJ, Aragón de la Cruz E 1997. Interaction of vermiculite with aliphatic amides (formamide, acetamide and pro-pionamide). Formation and study of interstratified phases in the transformation of Mg2+-NH-vermicuIite. Clays Clay Miner 45:311–326.

    Article  Google Scholar 

  • Serratosa JM, Johns WD, Shimoyama A. 1970. IR study of alkylammonium vermiculite complexes. Clays Clay Miner 18:107–113.

    Article  Google Scholar 

  • Smalley MV, Thomas RK, Matsuo T, Braganza LE 1989. Effect of hydrostatic-pressure on the swelling of n-butylam-monium vermiculite. Clays Clay Miner 37:474–478.

    Article  Google Scholar 

  • Stone MH, Wild A. 1978. The reaction of ammonia with vermiculite and hydrobiotite. Clay Miner 13:337–349.

    Article  Google Scholar 

  • Vila E, Ruiz-Amil A. 1988. Computer program for analysing interstratified structures by Fourier transform methods. Powder Diffrac 3:7–11.

    Article  Google Scholar 

  • Vimondlaboudigue A, Baron MH, Merlin JC, Prost R. 1996. Adsorption of Dinoseb on hectorite and vermiculite dec-ylammonium. Clay Miner 31:95–111.

    Article  Google Scholar 

  • Vimondlaboudigue A, Prost R. 1995. Comparative analysis of hectorite and vermiculite decylammonium complexes using infrared and Raman-spectrometry. Clay Miner 30: 337–352.

    Article  Google Scholar 

  • Walker GE 1967. Interaction of n-alkylammonium ions with mica-type layer lattices. Clay Miner 7:129–143.

    Article  Google Scholar 

  • Weiss A. 1963. Organic derivatives of mica-type layer silicates. Angew Chem Intern English Ed 2:134–144.

    Article  Google Scholar 

  • Weiss A, Michel E, Weiss A. 1958. Über den Einfluss von Wasserstoffbrückenbindungen auf ein- und zweidimensionale innerkristalline Quellungsvorgänge. Hydrogen bonding. New York: Pergamon Pr. p 495–508.

    Google Scholar 

  • Weiss A, Roloff G. 1963. Die Rolle organischer derivate von glimmenartigen Schichtsilikaten bei der bilding von Erdöl. In: Rosenguist Th, Groff-Peterson P, editors. Proc Int Clay Conf; 1963; Stockholm Oxford: Pergamon Pr. p 373–378.

    Google Scholar 

  • Williams GD, Moody KR, Smalley MV, King SM. 1994. The sol concentration effect in n-butylammonium vermiculite swelling. Clays Clay Miner 42:614–627.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Haro, M.C.J., Ruiz-Conde, A. & Pérez-Rodríguez, J.L. Stability of n-Butylammonium Vermiculite in Powder and Flake Forms. Clays Clay Miner. 46, 687–693 (1998). https://doi.org/10.1346/CCMN.1998.0460609

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1998.0460609

Key Words

Navigation