Skip to main content
Log in

Structural Organization of Na- and K-Montmorillonite Suspensions in Response to Osmotic and Thermal Stresses

  • Published:
Clays and Clay Minerals

Abstract

In order to understand the influence of salt concentration and temperature on the behavior and properties of clays used in drilling muds, we studied montmorillonite supensions (4 g clay/100 g solution) in 0.1, 0.5 and 1 M NaCl and KCl solutions. A fraction of each sample was heated to 200 °C in a closed vessel for 7 d, then cooled at room temperature (RT, 25 °C). Small-angle X-ray scattering (SAXS) spectra were recorded, for all the samples, at RT. The structure of the clay particles was determined by comparing the experimental intensity with the theoretical intensity computed from a model that took into account the number of layers per particle, the hydration state of the layers (0, l, 2, 3 or 4 water layers) and the order in the succession of these states. With this set of parameters, we can compute the mean statistical parameters (mean number of layers per particle), (mean interlayer distance) and δ¯2/2 (parameter describing the disorder of the distribution of interlayer distances). The evolution of these parameters shows that:

  1. 1)

    At low concentration (0.1 M NaCl or KCl), the samples do not consist of particles but of isolated layers (M = 1). The suspensions form gel-like structures. The difference between Na and K suspensions, or between heated and nonheated samples, is unnoticeable at the studied scale (5–500 Å).

  2. 2)

    An increase in salt concentration (from 0.1 to 0.5 M) brings the sample in a granular state: we notice the appearance of particles at 0.5 M ( ≥ 25). Differences appear between NaCl and KCl suspensions, and the temperature effect becomes visible. Thus, we noticed that in NaCl suspensions, particles are composed of hydrated layers (1, 2, 3 or 4 water layers) and internal porosity (d > 30 Å), whereas suspensions in KCl are characterized by the presence of interlayer distances of 10 Å, that is, of collapsed layers. Particles in the KCl suspensions are much thicker than in the NaCl corresponding ones, and also less hydrated at the interlayer level as well as at the internal porosity level. Further increase in salt concentration (0.5 to 1 M) amplifies this effect. As far as temperature is concerned, its effect is to promote the clay dispersion by breaking up the particles, dehydrating and disordering them. This effect is more important for low salt concentration, that is, when the system is less stressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barshad I. 1953. Adsorptive and swelling properties of clay water system. Clays Clay Miner 1:70–77.

    Article  Google Scholar 

  • Ben Rhaiem H. 1983. Etude du comportement hydrique des montmorillonites calciques et sodiques par analyse de la diffusion des rayons X aux petits angles. Mise en évidence de la transition solide hydraté-gel [Ph.D. thesis]. Orléans, France: Univ of Orléans. 136 p.

    Google Scholar 

  • Ben Rhaiem H, Pons CH, Tessier D. 1987. Factors affecting the microstructure of smectites. Role of cation and history of applied stresses. In: Schultz L.G., van Olphen H, Mumpton FA, editors. Proc Int Clay Conf; 1985; Denver, USA. Bloomington, IN: Clay Miner Soc. p 292–297.

    Google Scholar 

  • Ben Rhaiem H, Tessier D, Pons CH. 1986. Comportement hydrique et évolution structurale et texturale des montmorillonites au cours d’un cycle de desiccation-humectation: I. Cas des montmorillonites calciques. Clay Miner 21:9–29.

    Article  Google Scholar 

  • Brindley GW. 1981. Long-spacing organics for calibrating of interstratified clay minerais. Clays Clay Miner 29:67–68.

    Article  Google Scholar 

  • Calle de la C, Martin de Vidales, Pons CH. 1993. Stacking order in K/Mg interstratified vermiculite from Malawi. Clays Clay Miner 41:133–136.

    Article  Google Scholar 

  • Concaret J. 1967. Etude des mécanismes de la destruction des agrégats de terre au contact de solutions aqueuses. Ann Agron 18:65–93.

    Google Scholar 

  • Farmer VC. 1978. Water on particle surfaces. In: Greenland DJ, Hayes MHB, editors. The chemistry of soil constituents. New York: J. Wiley, p 405–448.

    Google Scholar 

  • Gaboriau H. 1991. Interstratifiés smectite-kaolinite de l’eure. Relations entre la structure, la texture et les propriétés en fonderie [Ph.D. thesis]. Orléans, France: Univ of Orléans. 273 p.

    Google Scholar 

  • Henin S. 1971. Les conceptions des agronomes concernant les états de l’eau dans les sols. Bull Groupe Français des Argiles XXIIL9-17.

    Google Scholar 

  • Jin H. 1994. Etude expérimentale du comportement de suspensions de bentonite au cours des forages [Ph.D. thesis], Nancy, France: INPL. 146 p.

    Google Scholar 

  • Mac Ewan DMC. 1958. Fourier transform methods for studying scattering from lamellar systems. II: The calculation of X-ray diffraction effects for various types of interstratification. Koloidzeitschr 156:61–67.

    Google Scholar 

  • Méring J. 1946. On the hydratation of montmorillonite. Faraday Soc 42b:205–219.

    Article  Google Scholar 

  • Méring J. 1949. L’interférence des rayons X dans les systèmes à interstratification désordonnée. Acta Cryst 2:371–380.

    Article  Google Scholar 

  • Millot G. 1964. Géologie des Argiles. Paris: Masson. 369 p.

    Google Scholar 

  • Monnier G, Stengel P, Fies JC. 1973. Une méthode de mesure de la densité apparente de petits agglomérats terreux. Application à l’analyse des systèmes de porosité du sol. Ann Agron 24:533–545.

    Google Scholar 

  • Newman ACD. 1987. The interaction of water with clay mineral surfaces. In: Newman ACD, editor. Chemistry of clays and clay minerals. New York: Wiley Intersci: Mineral Soc monograph 6. p 237–274.

    Google Scholar 

  • Norrish K. 1954. The swelling of montmorillonite. Disc Faraday Soc 18:120–134.

    Article  Google Scholar 

  • Pedro G. 1976. Sols argileux et argiles. Elements généraux en vue d’une introduction à leur étude. Science du Sol 2: 69–84.

    Google Scholar 

  • Plançon A. 1981. Diffraction by layer structures containing different kinds of layers and their stacking faults. J App Cryst 14:300–304.

    Article  Google Scholar 

  • Pons CH. 1980. Mise en évidence des relations entre la texture et la structure dans les systèmes eau-smectites par diffusion aux petits angles du rayonnement X-synchrotron [Ph.D. thesis]. Orléans, France: Univ of Orléans. 175 p.

    Google Scholar 

  • Pons CH, Rousseaux F, Tchoubar D. 1981. Utilisation du rayonnement synchrotron en diffusion aux petits angles pour l’étude du gonflement des smectites. I: Etude du système eau-montmorillonite Na en fonction de la température. Clay Miner 16:23–42.

    Article  Google Scholar 

  • Pons CH, Rousseaux F, Tchoubar D. 1982. Utilisation du rayonnement synchrotron en diffusion aux petits angles pour l’étude du gonflement des smectites. II: Etude de différents systèmes eau-smectite en fonction de la température. Clay Miner 17:327–338.

    Article  Google Scholar 

  • Pons CH, Tchoubar C, Tchoubar D. 1980. Organisation des molécules d’eau à la surface des feuillets dans un gel de montmorillonite-Na. Bull Mineral 103:452–456.

    Google Scholar 

  • Quirk JP. 1968. Particle interaction and soil swelling. Israel J Chem 3:213–234.

    Article  Google Scholar 

  • Raussel-Colom JA, Saez-Aunon J, Pons CH. 1989. Vermiculite gelation: Structural and textural evolution. Clay Miner 24:459–478.

    Article  Google Scholar 

  • Reynolds RC. 1980. Interstratified clay minerals. In: Brindley GW, Brown G, editors. Crystal structures of clay minerals and their X-ray identification. London: Mineral Soc. p 249–303.

    Google Scholar 

  • Reynolds RC, Hower J. 1970. The nature of interlayering in mixed-layer illite-montmorillonite. Clays Clay Miner 18: 25–36.

    Article  Google Scholar 

  • Robertson RHS, Tessier D, White J. 1982. The texture of an English fuller’s earth. Clay Miner 17:55–257.

    Article  Google Scholar 

  • Saez-Aunon J, Pons CH, Iglesias JZ, Rausell-Colom JA. 1983. Etude du gonflement des vermiculites-ornithine en solution saline par analyse de la diffusion des rayons X aux petits angles. Méthode d’interprétation et recherche des paramètres d’ordre. J Applied Cryst 16:439–448.

    Article  Google Scholar 

  • Tchoubar D, Rousseau F, Pons CH, Lemmonier M. 1978. Small-angle setting at LURE: Description and results. Nucl Inst Meth 152:301–305.

    Article  Google Scholar 

  • Tessier D. 1984. Etude expérimentale de l’organisation des matériaux argileux. Hydratation, gonflement et structuration au cours de la dessication et de la réhumectation [Ph.D. thesis]. Paris, France: Univ of Paris VII. 361 p.

    Google Scholar 

  • Touret O, Pons CH, Tessier D, Tardy Y. 1990. Etude de la répartition de l’eau dans les argiles saturées Mg2+ aux fortes teneurs en eau. Clay Miner 25:217–233.

    Article  Google Scholar 

  • Van Olphen H. 1977. An introduction to clay colloid chemistry. London: J. Wiley. 318 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faisandier, K., Pons, C.H., Tchoubar, D. et al. Structural Organization of Na- and K-Montmorillonite Suspensions in Response to Osmotic and Thermal Stresses. Clays Clay Miner. 46, 636–648 (1998). https://doi.org/10.1346/CCMN.1998.0460604

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1998.0460604

Key Words

Navigation