Skip to main content
Log in

Nomenclature of the Micas

Clays and Clay Minerals Aims and scope Submit manuscript

Cite this article

Abstract

End members and species defined with permissible ranges of composition are presented for the true micas, the brittle micas and the interlayer-cation-deficient micas. The determination of the crystallochemical formula for different available chemical data is outlined, and a system of modifiers and suffixes is given to allow the expression of unusual chemical substitutions or polytypic stacking arrangements. Tables of mica synonyms, varieties, ill-defined materials and a list of names formerly or erroneously used for micas are presented. The Mica Subcommittee was appointed by the Commission on New Minerals and Mineral Names (“Commission”) of the International Mineralogical Association (IMA). The definitions and recommendations presented were approved by the Commission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Bailey SW. 1984. Classification and structures of the micas. In: Bailey SW, editor. Rev Mineral 13. Micas. Washington, DC. Mineral Soc Am. p 1–12.

    Google Scholar 

  • Bailey SW, Brindley GW, Kodama H, Martin RT. 1979. Report of the Clay Minerals Society Nomenclature Committee. Clays Clay Miner 27:238–239.

    Article  Google Scholar 

  • Bailey SW, Frank-Kamenetskii VA, Goldsztaub S, Kato A, Pabst A, Schulz H, Taylor HFW, Fleischer M, Wilson AJC. 1977. Report of the International Mineralogical Association (IMA)-Intemational Union of Crystallography (IUCr) Joint Committee on Nomenclature. Acta Crystallogr A33:681–684.

    Article  Google Scholar 

  • Baronnet A. 1980. Polytypism in micas: A survey with emphasis on the crystal growth aspect. In: Kaldis E, editor. Current Topics Mater Sci 5. Amsterdam: North-Holland Publ Co. p 447–548.

    Google Scholar 

  • Ďurovič S. 1981. OD-Charakter, Polytypie und Identifikation von Schichtsilikaten. Fortschr Mineral 59:191–226.

    Google Scholar 

  • Flink G. 1899. Tainiolite. In: Flink G, Bøggild OB, Winther C. 1899. Mineraler fra Julianehaab indsamlede af G. Flink 1897. Medd Grønl 24:115–120.

    Google Scholar 

  • Foster MD. 1960. Interpretation of the composition of trioctahedral micas. US Geol Surv Prof Pap 354-B:11–48.

    Google Scholar 

  • Guinier A, Bokij GB, Boll-Dornberger K, Cowley JM, Ďurovič S, Jagodzinski H, Krishna P, de Wolff PM, Zvyagin BB, Cox DE, Goodman P, Hahn Th, Kuchitsu K, Abrahams SC. 1984. Nomenclature of polytype structures. Report of the International Union of Crystallography Ad-Hoc Committee on the Nomenclature of Disordered, Modulated and Polytype Structures. Acta Crystallogr A40:399–404.

    Article  Google Scholar 

  • Heinrich EW, Levinson AA, Levandowski DW, Hewitt CH. 1953. Studies in the natural history of micas. Project M978. Ann Arbor: Eng Res Inst, Univ of Michigan. 241 p.

    Google Scholar 

  • Hey MH. 1962. An index of mineral species & varieties arranged chemically. London: British Museum. 728 p.

    Google Scholar 

  • Hey MH. 1963. Appendix to the second edition of An index of mineral species and varieties arranged chemically. London: British Museum. 135 p.

    Google Scholar 

  • von Kobell E 1869. Ueber den Aspidolith, ein Glied aus der Biotit- und Phlogopit-Gruppe. Sitzungsber königl bayer Akad Wiss München Jg 1869 Bd 1:364–366.

    Google Scholar 

  • Nickel EH. 1992. Nomenclature for mineral solid solutions. Am Mineral 77:660–662.

    Google Scholar 

  • Nickel EH. 1993. Standardization of polytype suffixes. Am Mineral 78:1313.

    Google Scholar 

  • Rimsaite J. 1970. Structural formulae of oxidized and hydroxyl-deficient micas and decomposition of the hydroxyl group. Contrib Mineral Petrol 25:225–240.

    Article  Google Scholar 

  • Ross M, Takeda H, Wones DR. 1966. Mica polytypes: Systematic description and identification. Science 151:191–193.

    Article  Google Scholar 

  • Schreyer W, Abraham K, Kulke H. 1980. Natural sodium phlogopite coexisting with potassium phlogopite and sodian aluminian talc in a metamorphic evaporite sequence from Derrag, Tell Atlas, Algeria. Contrib Mineral Petrol 74:223–233.

    Article  Google Scholar 

  • Starkl G. 1883. Ueber neue Mineralvorkommnisse in Oesterreich. Jahrb kaiserl-königl geol Reichsanst Wien 33:635–658.

    Google Scholar 

  • Stevens RE. 1946. A system for calculating analyses of micas and related minerals to end members. US Geol Surv Bull 950:101–119.

    Google Scholar 

  • Takeda H, Ross M. 1995. Mica polytypism: Identification and origin. Am Mineral 80:715–724.

    Article  Google Scholar 

  • Takeda H, Sadanaga R. 1969. New unit layers for micas. Mineral J (Japan) 5:434–449.

    Article  Google Scholar 

  • Wahl W. 1925. Die Gesteine des Wiborger Rapakiwigebietes. Fennia 45:83–88.

    Google Scholar 

  • Zvyagin BB. 1964. Электронография и структурная кристаллография глинистых минералов. Moscow: Nauka. 282 p. 1967. Electron-diffraction analysis of clay mineral structures. New York: Plenum Pr. 364 p.

    Google Scholar 

  • Zvyagin BB, Vrublevskaya ZV, Zhukhlistov AP, Sidorenko OV, Soboleva SV, Fedotov AE 1979. Высоковольтная электронография в исследовании слоистых минералов (High-voltage electron diffraction in the study of layered minerals). Moscow: Nauka. 224 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Russia; died 1994.

Italy; died 1988.

Australia; resigned 1986.

U.S.A.; died 1984.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rieder, M., Cavazzini, G., D’yakonov, Y.S. et al. Nomenclature of the Micas. Clays Clay Miner. 46, 586–595 (1998). https://doi.org/10.1346/CCMN.1998.0460513

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1998.0460513

Key Words

Navigation