Skip to main content
Log in

The Transformation of Illite to Muscovite in Pelitic Rocks: Constraints from X-Ray Diffraction

  • Published:
Clays and Clay Minerals

Abstract

The boundary between diagenesis and metamorphism most likely involves the change of illite into mica. Observations of this change can be made using decomposed X-ray diffraction (XRD) spectra of illitic clay mineral assemblages in pelitic sedimentary rocks.

XRD analysis of the (003) diffraction peak of diagenetic illites indicates that there are 2 components, one of small coherent diffraction domains and another of larger domain size. Peak width, shape and position define these fractions. The smaller domain size material in diagenetic rocks is highly illitic (>95%) but contains some smectite layers and can be best described by Gaussian shapes. The grains with larger diffracting domains show no expanding layers.

Metamorphic illites (probably muscovites) show no smectite interlayers in any fraction. In the transition from sedimentary and diagenetic to metamorphic illites, new grains of smectite-free illite are formed at the expense of the older minerals. This suggests that the new metamorphic minerals are recrystallized phases. Metamorphism of illites then produces new mica phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Dalla Torre M, Livi, KJT, Veblen RV, Frey M. 1996. White mica evolution from phengite to muscovite in shales and shale matrix melange, Diablo Range, California. Contrib Mineral Petrol 123:390–405.

    Article  Google Scholar 

  • Dunoyer de Segonzac G. 1970. The transformation of clay minerals during diagenesis and low-grade metamorphism: A review. Sedimentology 15:281–346.

    Article  Google Scholar 

  • Eberl DD, Środoń J. 1988. Ostwald ripening and interparticle-diffraction effects for illite crystals. Am Mineral 73:1335–1345.

    Google Scholar 

  • Frey M. 1987a. The reaction isograd kaolinite quartz = pyrophyllite H2O, Helvetic Alps, Switzerland. Schweiz Min Petr Mitt 67:1–11.

    Google Scholar 

  • Frey M. 1987b. Very low grade metamorphism of clastic sedimentary rocks. In: Frey M, editor. Low-temperature metamorphism. Glasgow: Blackie. p 9–58.

    Google Scholar 

  • Gharrabi M, Velde B. 1995. Clay mineralogy evolution in the Illinois Basin and its causes. Clay Miner 30:353–364.

    Article  Google Scholar 

  • Kisch HJ. 1987. Correlation between indicators of very low-grade metamorphism. In: Frey M, editor. Low temperature metamorphism. London: Blackie. 552 p.

    Google Scholar 

  • Kisch H. 1990. Calibration of the anchizone: A critical comparison of illite “crystallinity” scales used for definition. J Meta Geol 8:31–46.

    Article  Google Scholar 

  • Kübler B. 1968. Evaluation quantitative du métamorphisme par la cristallinité de l’illite. Bull Centre Rech Pau-SNAP 2, 2:385–397.

    Google Scholar 

  • Lanson B. 1990. Mise en évidence des mécanismes réaction-nels des interstratifiés illite/smectite au cours de la diage-nese [thesis]. Paris: Université de Paris VI. 366 p.

    Google Scholar 

  • Lanson B, Besson G. 1992. Characterisation of the end of smectite-to-illite transformation: Decomposition of X-ray patterns. Clays Clay Miner 40:40–52.

    Article  Google Scholar 

  • Lanson B, Champion D. 1991. The I-S-to-illite reaction in late stage diagenesis. Am J Sci 291:473–506.

    Article  Google Scholar 

  • Lanson B, Velde B. 1992. Decomposition of X-ray diffraction patterns: A convenient way to describe complex diagenetic evolution. Clays Clay Miner 40:629–643.

    Article  Google Scholar 

  • Merriman RJ, Roberts B, Peacor DR. 1990. A transmission electron microscope study of white mica crystallite size distribution in a mudstone to slate transitional sequence, North Wales, UK. Contrib Mineral Petrol 106:27–40.

    Article  Google Scholar 

  • Meunier A, Velde B. 1989. Solid solutions in I-S mixed layers and illite. Am Mineral 74:1106–1112.

    Google Scholar 

  • Moore DM, Reynolds RC. 1989. X-ray diffraction identification and analysis of clay minerals. Oxford: Oxford Univ Pr. 322 p.

    Google Scholar 

  • Paradis S, Velde B, Nicot E. 1983. Chloritôid-pyrophyllite-rectorite facies rocks from Brittany, France. Contrib Mineral Petrol 83:342–347.

    Article  Google Scholar 

  • Primmer TJ. 1985. A transition from diagenesis to greenshist facies within a major Varsican fold/thrust complex in southwest England. Mineral Mag 49:365–374.

    Article  Google Scholar 

  • Reynolds RC. 1980. Interstratified clay minerals. In: Brindley GW, Brown G, editors. Crystal structures of clay minerals and their X-ray identification. London: Mineral Soc. Memoir 4. p 249–359.

    Google Scholar 

  • Robinson D, Warr LN, Bevins RE. 1990. The illite “crystal-linity” technique: A critical appraisal of its precision. J Meta Geol 8:333–344.

    Article  Google Scholar 

  • Robinson D. 1987. Transition from diagenesis to metamor-phism in extensional and collision settings. Geology 15: 866–869.

    Article  Google Scholar 

  • Sagon J-P. 1976. Contribution à l’étude géologique de la partie orientale du bassin de Câteaulin (Massif Armorican): Stratigraphie, volcanisme, métamorphisme tectonique [Thèse de Doctorat d’Etat]. Paris: Universite de Paris VI. 671 p.

    Google Scholar 

  • Stern WB, Mullis J, Rahn M, Frey M. 1991. Deconvolution of the first “illite” basal reflection. Schweiz Min Petog Mitt 71:453–462.

    Google Scholar 

  • Velde B. 1968. The effect of chemical reduction on the stability of pyrophyllite and kaolinite in pelitic rocks. J Sed Petrol 39:13–16.

    Google Scholar 

  • Velde B, Brusewitz A-M. 1986. Compositional variation in component layers in natural illite/smectite. Clays Clay Miner 34:651–657.

    Article  Google Scholar 

  • Velde B, Vasseur G. 1992. Estimation of the diagenetic smectite to illite transformation in time-temperature space. Am Mineral 77:967–976.

    Google Scholar 

  • Wang H, Sterni WB, Frey M. 1995. Deconvolution of the X-ray “illite” 10A complex: A case study of Helvetic sediments from eastern Switzerland. Schweiz Min Pet Mitt 75: 187–199.

    Google Scholar 

  • Warr LN, Primmer TJ, Robinson D. 1991. Varsican very low-grade metamorphism in southwest England: A diastather-mal and thrust-related origin. J Meta Geol 9:751–764.

    Article  Google Scholar 

  • Warr LN, Rice, AHN. 1994. Interlaboratory standardization and calibration of clay mineral crystallinity and crystallite size data. J Meta Geol 12:141–152.

    Article  Google Scholar 

  • Weaver CE. 1989. Clays, muds and shales. Developments in sedimentology. Amsterdam: Elsevier. 556 p.

    Google Scholar 

  • Winkler HGF. 1976. Petrogenesis of metamorphic rocks. Berlin: Springer Verlag. 334 p.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gharrabi, M., Velde, B. & Sagon, J.P. The Transformation of Illite to Muscovite in Pelitic Rocks: Constraints from X-Ray Diffraction. Clays Clay Miner. 46, 79–88 (1998). https://doi.org/10.1346/CCMN.1998.0460109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1998.0460109

Key Words

Navigation