Skip to main content
Log in

Paramagnetic Fe3+: A Sensitive Probe for Disorder in Kaolinite

  • Published:
Clays and Clay Minerals

Abstract

The Fe3+ substituted for Al3+ at the 2 octahedral positions is one of the most common impurities in the kaolinite structure detected by electron paramagnetic resonance (EPR). Evidence has been provided for a relationship between the shape of EPR spectra for structural Fe and the structural disorder in kaolinite. It is proposed that the structural Fe be used as a sensitive probe for the degree of disorder of natural kaolinites. With this aim in view, an EPR disorder index (E) is defined from the width of selected EPR lines. Using reference kaolinites, it is shown that this index can account as well for long-range disorder detected by means of X-ray diffraction (XRD) as for local perturbations such as radiation-induced defects (RID). It is shown that the disorder observed through EPR has some points in common with the XRD-measured one. The influence on E of the presence of RID is shown by the study of artificially and naturally irradiated kaolinites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abragam A, Bleaney B. 1970. Electron paramagnetic resonance of transition ions. Oxford: Clarendon Pr. 91. p.

    Google Scholar 

  • Allard T, Muller J-P, Dran J-C, Menager M-T. 1994. Radiation-induced paramagnetic defects in natural kaolinites: Alpha dosimetry with ion beam irradiation. Phys Chem Mineral 21:85–96.

    Article  Google Scholar 

  • Artioli G, Bellotto M, Gualtieri A, Pavese A. 1995. Nature of structural disorder in natural kaolinites: A new model based on computer simulation of powder diffraction data and electrostatic energy calculation. Clays Clay Miner 43:438–445.

    Article  Google Scholar 

  • Bernas H, Chaumont J, Cottereau E, Meunier R, Traverse A, Clerc C, Kaitasov O, Lalu F, Le Du D, Moroy G, Salomé M. 1992. Progress report on Aramis, the 2MV tandem at Orsay. Nucl Instrum Methods Phys Res B62:416–420.

    Article  Google Scholar 

  • Bish DL, Von Dreele RB. 1989. Rietveld refinement of non-hydrogen atomic positions in kaolinite. Clays Clay Miner 37:289–296.

    Article  Google Scholar 

  • Bookin AS, Drits VA, Plançon A, Tchoubar C. 1989. Stacking faults in the kaolin-group minerals in the light of real structural features. Clays Clay Miner 37:297–307.

    Article  Google Scholar 

  • Brindley, GW, Brown G. 1980. Crystal structures of clay minerals and their X-ray identification. London: Mineral Soc. p 495.

    Google Scholar 

  • Brindley GW, Kao CC, Harrison J, Lipsicas M, Raythatha R. 1986. Relation between structural disorder and other characteristics of kaolinites and dickites. Clays Clay Miner 34:239–249.

    Article  Google Scholar 

  • Cases J-M, Liétard O, Yvon J, Delon J-F. 1982. Etude des propriétés cristallochimiques, morphologiques, superficielles de kaolinites désordonnées. Bull Mineral 105:439–455.

    Google Scholar 

  • Clozel B, Allard T, Muller J-P. 1994. Nature and stability of radiation-induced defects in natural kaolinites: New results and reappraisal of published works. Clays Clay Miner 42:657–666.

    Article  Google Scholar 

  • Clozel B, Gaite J-M, J-P, Muller. 1995. Al-O-Al paramagnetic defects in kaolinite. Phys Chem Mineral 22:351–356.

    Article  Google Scholar 

  • Delineau T, Allard T, Muller J-P, Barres O, Yvon J, Cases J-M. 1994. FTIR reflectance vs. EPR studies of structural iron in kaolinites. Clays Clay Miner 42:308–320.

    Article  Google Scholar 

  • Gaite J-M, Ermakoff P, Muller J-P. 1993. Characterization and origin of two Fe3+ EPR spectra in kaolinite. Phys Chem Mineral 20:242–247.

    Article  Google Scholar 

  • Gaite J-M, Michoulier J. 1970. Application de la résonance paramagnétique électrique de l’ion Fe3+ à l’étude de la structure des feldspaths. Bull Soc Fr Mineral 93:341–356.

    Google Scholar 

  • Giese RF Jr. 1988. Kaolin minerals: Structures and stabilities. In: Bailey SW, editor. Kaolin minerals: Structures and stabilities. Washington, DC: Mineral Soc Am. p 29–66.

    Google Scholar 

  • Hall PL. 1980. The application of spin resonance spectroscopy to studies of clay minerals. Clay Miner 15:321–351.

    Article  Google Scholar 

  • Hinckley DN. 1963. Variability in “crystallinity” values among the kaolin deposits of the coastal plain of Georgia and South Carolina. Clays Clay Miner 13:229–235.

    Google Scholar 

  • Ildefonse P, Muller JP, Clozel B, Calas G. 1990. Study of two alteration systems as natural analogues for radionuclide release and migration. Eng Geol 29:413–439.

    Article  Google Scholar 

  • Ildefonse P, Muller J-P, Clozel B, Calas G. 1991. Record of past contact between altered rocks and radioactive solutions through radiation-induced defects in kaolinite. Mater Res Soc Symp Proc:749–756.

    Google Scholar 

  • Jones JP, Angel BR, Hall PL. 1974. Electron spin resonance studies of doped synthetic kaolinites. Clay Miner 10:257–259.

    Article  Google Scholar 

  • Leslie BW, Pearcy EC, Prikryl JD. 1993. Oxidative alteration of uraninite at the Nopal I deposit, Mexico: Possible contaminant transport and source term constraints for the proposed repository at Yucca Mountain. MRS Symp Proc 294:505–512.

    Article  Google Scholar 

  • Liétard O. 1977. Contribution à l’étude des propriétés physicochimiques cristallographiques et morphologiques des kaolins [Doctoral d’Etat]. Spécialité Sciences Physiques. Lorraine, France: Institut National Polytechnique de Lorraine.

    Google Scholar 

  • Meads RE, Maiden PJ. 1975. Electron spin resonance in natural kaolinites containing Fe3+ and other transition metal ions. Clay Miner 10:313–345.

    Article  Google Scholar 

  • Mestdagh MM, Herbillon AJ, Rodrique L, Rouxhet PJ. 1982. Evaluation du rôle du fer structural sur la cristallinité des kaolinites. Bull Mineral 105:457–466.

    Google Scholar 

  • Mestdagh MM, Vielvoye L, Herbillon AJ. 1980. Iron in kaolinite: II. The relationship between kaolinite crystallinity and iron content. Clay Miner 15:1–13.

    Article  Google Scholar 

  • Moore DM, Reynolds RC Jr. 1989. X-ray diffraction and the identification and analysis of clay minerals. New York: Oxford Univ Pr. 33. p.

    Google Scholar 

  • Muller J-P, Bocquier G. 1987. Textural and mineralogical relationships between ferruginous nodules and surrounding clay matrices in a laterite from Cameroon. In: Schultz LG, van Olphen H, Mumpton FA. Proc Int Clay Conf; 1985; Denver, CO. Bloomington, IN: Clay Miner Soc. p 186–194.

    Google Scholar 

  • Muller J-P, Calas G. 1993. Genetic significance of paramagnetic centers in kaolinites. Boulder, CO: Clay Miner Soc. p 261–289.

    Google Scholar 

  • Muller J-P, Clozel B, Ildefonse P, Calas G. 1992. Radiation-induced defects in kaolinite: Indirect assessment of radionuclide migration in the geosphere. Appl Geochem 1:205–216.

    Article  Google Scholar 

  • Muller JP, Ildefonse P, Calas G. 1990. Paramagnetic defect centers in hydrothermal kaolinite from an altered tuff in the Nopal Uranium deposit, Chihuahua. Mexico. Clays Clay Miner 38:600–608.

    Article  Google Scholar 

  • Noble FR. 1971. A study of disorder in kaolinite. Clay Miner 9:71–81.

    Article  Google Scholar 

  • Plançon A, Giese RF, Snyder R. 1988. The Hinckley index for kaolinites. Clay Miner 23:249–260.

    Article  Google Scholar 

  • Plancon A, Giese Jr RF, Snyder R, Drits VA, Bookin AS. 1989. Stacking faults in the kaolin-group minerals: Defect structures of kaolinite. Clays Clay Miner 37:203–210.

    Article  Google Scholar 

  • Plançon A, Zacharie C. 1990. An expert system for the structural characterization of kaolinites. Clay Miner 25:249–260.

    Article  Google Scholar 

  • Schroeder PA, Pruett RJ. 1996. Fe ordering in kaolinite: Insights from 29Si and 27A1 MAS NMR spectroscopy. Am Mineral 81:26–38.

    Article  Google Scholar 

  • Stone WEE, Torres-Sanchez RM. 1988. Nuclear magnetic resonance spectroscopy applied to minerals. Structural iron in kaolinites as viewed by proton magnetic resonance. J Chem Soc, Faraday Trans 1–84:117–132.

    Article  Google Scholar 

  • van Olphen H, Fripiat JJ. 1979. Data Handbook for clay minerals and other non-metallic minerals. Pergamon Pr 346 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaite, JM., Ermakoff, P., Allard, T. et al. Paramagnetic Fe3+: A Sensitive Probe for Disorder in Kaolinite. Clays Clay Miner. 45, 496–505 (1997). https://doi.org/10.1346/CCMN.1997.0450402

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1997.0450402

Key Words

Navigation