Skip to main content
Log in

Decomposition of Experimental X-Ray Diffraction Patterns (Profile Fitting): A Convenient Way to Study Clay Minerals

  • Published:
Clays and Clay Minerals

Abstract

This paper thoroughly describes the decomposition procedure, using the example of DECOMPXR (Lanson 1990). The steps of the decomposition procedure are: 1) preliminary data processing; 2) decomposition; 3) validation of results; and 4) use of the results. The use of decomposition is restricted to the separation of contributions from various phases. The effect of preliminary data processing steps (data smoothing, background stripping) on profile shape is shown to be limited and their implementation is detailed. Potential experimental limitations such as peak symmetry, experimental reproducibility or discrimination are equally minor. A logical decomposition process starts from the definition of the angular range to be fitted, proceeds with the determination of the number of elementary peaks to be fitted and ends with the check for results consistency.

Numerical data processing is a powerful tool for the accurate identification of monophases, because of the additional parameters available to constrain XRD profile simulation. Ultimately, however, the match over the whole angular range of both the experimental and the simulated patterns remains the only valid way to characterize the phases present in the sample. Additionally, the decomposition procedure permits both the identification of complex clay mineral assemblages and the characterization of their evolution. This step constrains, and may help to determine, the reaction mechanisms of a transformation; and, as a consequence, to characterize and to model the kinetics of this transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bouchet A, Lajudie A, Rassineux F, Meunier A, Atabek R. 1992. Mineralogy and kinetics of alteration of a mixed-layer kaolinite/smectite in nuclear waste disposal simulation experiment (Stripa site, Sweden). Appl Clay Sci 7:113–123.

    Article  Google Scholar 

  • Drits VA, Tchoubar C, Besson G, Bookin AS, Rousseaux F, Sakharov BA, Tchoubar D. 1990. X-ray diffraction by disordered lamellar structures: theory and applications to microdivided silicates and carbons. Berlin: Springer-Verlag. 371 p.

    Book  Google Scholar 

  • Drits VA, Weber F, Salyn AL, Tsipursky SI. 1993. X-ray identification of one-layer illite varieties: application to the study of illites around uranium deposits of Canada. Clays Clay Miner 41:389–398.

    Article  Google Scholar 

  • Howard SA, Preston KD. 1989. Profile fitting of powder diffraction patterns. In: Bish DL, Post JE, editors. Reviews in mineralogy 20: Modern powder diffraction. Washington, DC: Miner Soc Am. p 217–275.

    Chapter  Google Scholar 

  • Howard SA, Snyder RL. 1983. An evaluation of some profile models and optimization procedures used in the profile fitting. Adv X-ray Anal 26:73–81.

    Google Scholar 

  • Jones RC. 1989. A computer technique for X-ray diffraction curve fitting/peak decomposition. In: Pevear DR, Mumpton FA, editors. Clay Minerals Society workshop lectures, vol 1: Quantitative mineral analysis of clays. Boulder, CO: Clay Miner Soc. p 51–101.

    Google Scholar 

  • Klug HP, Alexander LE. 1974. X-ray diffraction procedures for polycrystalline and amorphous materials. New York: J Wiley. 966 p.

    Google Scholar 

  • Kodama H, Gatineau L, Méring J. 1971. An analysis of X-ray diffraction line profiles of microcrystalline musco-vites. Clays Clay Miner 19:405–413.

    Article  Google Scholar 

  • Lanson B. 1990. Mise en évidence des mécanismes de transformation des interstratifiés illite/smectite au cours de la diagenèse [Ph.D. thesis]. Paris: Univ. Paris 6 — Jussieu. 366 p.

    Google Scholar 

  • Lanson B, Beaufort D, Berger G, Baradat J, Lacharpagne JC. 1996. Late-stage diagenesis of clay minerals in porous rocks: Lower Permian Rotliegendes reservoir off-shore of The Netherlands. J Sed Res 66:501–518.

    Google Scholar 

  • Lanson B, Beaufort D, Berger G, Petit S, Lacharpagne JC. 1995. Evolution de la structure cristallographique des minéraux argileux dans le réservoir gréseux Rotliegend des Pays-Bas. Bull Cent Rech EAP 19:243–265.

    Google Scholar 

  • Lanson B, Besson G. 1992. Characterization of the end of smectite-to-illite transformation: Decomposition of X-ray patterns. Clays Clay Miner 40:40–52.

    Article  Google Scholar 

  • Lanson B, Champion D. 1991. The I/S-to-illite reaction in the late stage diagenesis. Am J Sci 291:473–506.

    Article  Google Scholar 

  • Lanson B, Meunier A. 1995. La transformation des interstratifiés ordonnés (S≥1) illite/smectite en illite dans les séries diagénétiques: état des connaissances et perspectives. Bull Cent Rech EAP 19:149–165.

    Google Scholar 

  • Lanson B, Velde B. 1992. Decomposition of X-ray diffraction patterns: a convenient way to describe complex diagenetic smectite-to-illite evolution. Clays Clay Miner 40:629–643.

    Article  Google Scholar 

  • Liebhafsky HA, Pfeiffer HG, Winslow EH, Zemany PD. 1972. X-rays, electrons, and analytical chemistry: Spectrochemical analysis with X-rays. New York: J Wiley. 566 p.

    Google Scholar 

  • Louër D, Langford JI. 1988. Peak shape and resolution in conventional diffractometry with monochromatic X-rays. J Appl Crystallogr 21:430–437.

    Article  Google Scholar 

  • Matthews J, Velde B, Johansen H. 1994. Significance of K-Ar ages of authigenic illitic clay minerals in sandstones and shales from the North Sea. Clay Miner 29:379–389.

    Article  Google Scholar 

  • Moore DM, Reynolds RC, Jr. 1989. X-ray diffraction and the identification and analysis of clay minerals. Oxford: Oxford Univ Pr. 322 p.

    Google Scholar 

  • Neider JA, Mead R. 1965. A simplex method for function minimization. Computer J 7:757–769.

    Google Scholar 

  • Pevear DR, Klimentidis RE, Robinson GA. 1991. Genetic significance of kaolinite nucleation and growth on pre-existing mica in sandstones and shales. In: Program and abstracts for the Clay Miner Soc 28th annual meeting; Houston, Texas. p 125.

    Google Scholar 

  • Pons CH, Rousseaux F, Tchoubar D. 1981. Utilisation du rayonnement synchrotron en diffusion aux petits angles pour l’étude du gonflement des smectites: I. Etude du système eau-montmorillonite-Na en fonction de la température. Clay Miner 16:23–42.

    Article  Google Scholar 

  • Pons CH, Rousseaux F, Tchoubar D. 1982. Utilisation du rayonnement synchrotron en diffusion aux petits angles pour l’étude du gonflement des smectites: II. Etude de différents systèmes eau-smectites en fonction de la température. Clay Miner 17:327–338.

    Article  Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT. 1986. Numerical recipies: The art of scientific computing. Cambridge: Cambridge Univ Pr. 818 p.

    Google Scholar 

  • Renac C, Meunier A. 1995. Reconstruction of paleothermal conditions in a passive margin using illite/smectite mixed-layered series (BA1 scientific deep drill-hole, Ardèche, France). Clay Miner 30:107–118.

    Article  Google Scholar 

  • Reynolds RC Jr. 1980. Interstratified clay minerals. In: Brindley GW, Brown G, editors. Crystal structures of clay minerals and their X-ray identification. London: Miner Soc. p 249–359.

    Google Scholar 

  • Reynolds RC Jr. 1986. The Lorentz-polarization factor and preferred orientation in oriented clay aggregates. Clays Clay Miner 34:359–367.

    Article  Google Scholar 

  • Reynolds RC Jr. 1989. Diffraction by small and disordered crystals. In: Bish DL, Post JE, editors. Reviews in mineralogy 20: Modern powder diffraction. Washington, DC: Miner Soc Am. p 145–181.

    Chapter  Google Scholar 

  • Reynolds RC Jr, Hower J. 1970. The nature of interlayering in mixed-layer illite-montmorillonites. Clays Clay Miner 18:25–36.

    Article  Google Scholar 

  • Righi D, Meunier A. 1991. Characterization and genetic interpretation of clays in an acid brown soil (dystrochrept) developed in a granitic saprolite. Clays Clay Miner 39:519–530.

    Article  Google Scholar 

  • Righi D, Petit S, Bouchet A. 1993. Characterization of hy-droxy-interlayered vermiculite and illite/smectite interstratified minerals from the weathering of chlorite in a cryofhod. Clays Clay Miner 41:484–495.

    Article  Google Scholar 

  • Righi D, Velde B, Meunier A. 1995. Clay stability in clay-dominated soil systems. Clay Miner 30:45–54.

    Article  Google Scholar 

  • Robinson D, Bevins RE. 1994. Mafic phyllosilicates in low-grade metabasites. Characterization using deconvolution analysis. Clay Miner 29:223–237.

    Article  Google Scholar 

  • Sato T, Watanabe X, Otsuka R. 1992. Effects of layer charge, charge location, and energy change on expansion properties of dioctahedral smectites. Clays Clay Miner 40:103–113.

    Article  Google Scholar 

  • Srodori J. 1980. Precise identification of illite/smectite inter-stratifications by X-ray powder diffraction. Clays Clay Miner 28:401–411.

    Article  Google Scholar 

  • Stern WB, Mullis J, Rahn M, Frey M. 1991. Deconvolution of the first “illite” basal reflection. Schweiz Mineral Pe-trogr Mitt 71:453–462.

    Google Scholar 

  • Tsipursky SJ, Eberl DD, Buseck PR. 1992. Unusual tops (bottoms?) of particles of IM illite from the Silverton Caldera (CO). In: Agronomy abstracts annual meetings. Madison, WI: Am Soc Agron. p 381–382.

    Google Scholar 

  • Varajao A, Meunier A. 1995. Particle morphological evolution during the conversion of I/S to illite in lower cretaceous shales from Sergipe-Alagoas Basin, Brazil. Clays Clay Miner 43:14–28.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanson, B. Decomposition of Experimental X-Ray Diffraction Patterns (Profile Fitting): A Convenient Way to Study Clay Minerals. Clays Clay Miner. 45, 132–146 (1997). https://doi.org/10.1346/CCMN.1997.0450202

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1997.0450202

Key Words

Navigation