Skip to main content
Log in

Refinement of the Structure of Natural Ferriphlogopite

  • Published:
Clays and Clay Minerals

Abstract

Two ferriphlogopite-1M crystals with a composition (K0.99Na0.01)Σ=1.00(Mg2.73Fe2+0.l7Fe3+0.08-Ti0.01)Σ=2.299[(Fe3+0.95Si3.05)Σ=4.00O10.17](OH)1.79F0.04 (sample S1) and (K102)Σ=1.02(Mg2.68Fe2+0.20Fe3+0.11-Mn0.01)Σ=3.00[(Fe3+0.95Si3.05)Σ=4.00O10.18](OH)1.75F0.07 (sample S2) occur within an alkali-carbonatic complex near Tapira, Belo Horizonte, Minas Gerais, Brazil. Each crystal was studied by single-crystal X-ray diffraction. The least-squares refinements of space group C2/m resulted in R values of 0.031 for S1 and 0.025 for S2. Results showed that Fe3+ substitutes for Si within the tetrahedral sites and that the Fe distribution is fully disordered. The octahedral sites are preferentially occupied by Mg. The presence of Fe3+ within the tetrahedral sheet produces increased cell edge lengths. For sample S1, a = 5.362 Å, b = 9.288 Å, c = 10.321 Å and the monoclinic β angle was: β = 99.99°. For sample S2, a = 5.3649 Å, b = 9.2924 Å, c = 10.3255 Å and the monoclinic β angle was: β = 99.988°. The tetrahedral rotation angle of a = 11.5° is necessary for tetrahedral and octahedral sheet congruency. The enlarged tetrahedral sites are regular, with cations close to their geometric center. Ferriphlogopites have identical mean bond lengths for M1 and M2 sites within standard deviation. The M1-O3 and M2-O3 bond lengths are longer than the mean so that O3 may articulate with the tetrahedra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alietti E, Brigatti MF, Poppi L. 1995. The crystal structure and chemistry of high-aluminum phlogopites. Mineral Mag 59:149–157.

    Article  Google Scholar 

  • Bailey SW. 1988. X-ray diffraction identification of the poly-types of mica, serpentine, and chlorite. Clays & Clay Miner 36:195–213.

    Article  Google Scholar 

  • Beurlen H, Cassadanne JP. 1981. The brazilian mineral resources. Earth Sci Rev 17:177–206.

    Article  Google Scholar 

  • Bigi S, Brigatti ME 1994. Crystal chemistry and micro-structures of plutonic biotite. Am Mineral 79:63–72.

    Google Scholar 

  • Brigatti MF, Davoli P. 1990. Crystal structure refinement of 1M plutonic biotites. Am Mineral 75:305–313.

    Google Scholar 

  • Brigatti MF, Medici L, Saccani E, Vaccaro C. 1995. Phlogopites from the Alkaline-Carbonatite Complex of Tapira (Brazil): implications for their petrogenetical significance. Plinius 14:84–86.

    Google Scholar 

  • Busing WR, Martin KO, Levi HS. 1962. ORFLS a FORTRAN crystallographic least-squares program. U.S. National Technical Information Service ORNL-TM-305.

    Google Scholar 

  • Cruciani G, Zanazzi PF. 1994. Cation partitioning and substitution mechanisms in 1M-phlogopite: a crystal chemical study. Am Mineral 78:289–301.

    Google Scholar 

  • Donnay G, Donnay JDH, Takeda H. 1964. Trioctahedral one-layer micas. II. Prediction of the structure from composition and cell dimensions. Acta Cryst 17:1374–1381.

    Article  Google Scholar 

  • Donnay G, Morimoto N, Takeda H, Donnay DH. 1964. Trioctahedral one-layer micas. I. Crystal structure of a synthetic iron mica. Acta Cryst 17:1369–1373.

    Article  Google Scholar 

  • Dyar MD. 1990. Mössbauer spectra of biotite from meta-pelites. Am Mineral 75:656–666.

    Google Scholar 

  • Farmer GL, Boettcher AL. 1981. Petrologic and crystal chemical significance of some deep-seated phlogopites. Am Mineral 66:1154–1163.

    Google Scholar 

  • Foley SF. 1989. Experimental constraints on phlogopite chemistry in lamproites: I. The effect of water activity and oxygen fugacity. Eur J Mineral 1:411–426.

    Article  Google Scholar 

  • Guggenheim S, Chang Y-H, Koster van Groos AF. 1987. Muscovite dehydroxylation: High-temperature studies. Am Mineral 72:537–550.

    Google Scholar 

  • Guidotti CV, Dyar MD. 1991. Ferric iron in metamorphic biotites and its petrologic and crystallochemical implications. Am Mineral 76:161–175.

    Google Scholar 

  • Hazen RM, Burnham CW. 1973. The crystal structures of one-layer phlogopite and annite. Am Mineral 58:889–900.

    Google Scholar 

  • Hazen RM, Finger LW, Velde D. 1981. Crystal structure of a silica and alkali-rich trioctahedral mica. Am Mineral 66: 586–591.

    Google Scholar 

  • Jakob J. 1925. X. beiträge zur chemischen konstitution der glimmer. I. Mitteilung die schwedischen manganophylle. Z Kristallogr 61:155–163.

    Google Scholar 

  • Joswig W. 1972. Neutronenbeugungsmessungen an einem 1M-Phlogopit. N. Jahrbuch f. Mineralogie Monatshefte 1–11.

    Google Scholar 

  • Meyrowitz R. 1970. New semimicroprocedure for determination of ferrous iron in refractory silicate minerals using a sodium metafluoborate decomposition. Anal Chem 42: 1110–1113.

    Article  Google Scholar 

  • Neal CR, Taylor LA. 1989. The petrography and composition of phlogopite micas from the Blue Ball kimberlite, Arkansas: a record of chemical evolution during crystallization. Mineral & Petrol 40:207–224.

    Article  Google Scholar 

  • Ohta T, Takeda H, Takéuchi Y. 1982. Mica polytypism: similarities in the crystal structures of coexisting 1M and 2M1 oxybiotite. Am Mineral 67:298–310.

    Google Scholar 

  • Rancourt DG, Christie IAD, Royer M, Kodama H, Robert JL, Lalonde AE, Murad E. 1994. Determination of accurate [4]Fe3+, [6]Fe3+, and [6]Fe2+ site populations in synthetic annite by Mössbauer spectroscopy. Am Mineral 79:51–62.

    Google Scholar 

  • Rancourt DG, Dang MZ, Lalonde AE. 1992. Mössbauer spectroscopy of tetrahedral Fe3+ in trioctahedral micas. Am Mineral 77:34–43.

    Google Scholar 

  • Renner B, Lehmann G. 1986. Correlation of angular and bond length distortions in T04 units in crystals. Z Kristallogr 175:43–59.

    Google Scholar 

  • Robinson K, Gibbs GV, Ribbe PH. 1971. Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172:567–570.

    Article  Google Scholar 

  • Semenova TF, Rozhdestvenskaya IV, Frank-Kamenetskii VA. 1977. Refinement of crystal structure of tetraferriphlogo-pite. Soviet Phys Crystall 22:680–683.

    Google Scholar 

  • Semenova TF, Rozhdestvenskaya IV, Frank-Kamenetskii VA, Pavlishin VI. 1983. Crystal structure of tetraferriphlogo-pite and tetraferribiotite. Mineral Z 5:41–49 (in Russian).

    Google Scholar 

  • Siemens 1993. XSCANS System—Technical reference Siemens Analytical X-ray Instruments.

    Google Scholar 

  • Steinfink H. 1962. Crystal structure of a trioctahedral mica phlogopite. Am Mineral 47:886–896.

    Google Scholar 

  • Takeda H, Ross M. 1975. Mica polytypism: dissimilarities in the crystal structures of coexisting 1M and 2M1 biotite. Am Mineral 60:1030–1040.

    Google Scholar 

  • Toraya H. 1981. Distortions of octahedra and octahedral sheets in 1M micas and the relation to their stability. Z Kristallogr 157:173–190.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brigatti, M.F., Medici, L. & Poppi, L. Refinement of the Structure of Natural Ferriphlogopite. Clays Clay Miner. 44, 540–545 (1996). https://doi.org/10.1346/CCMN.1996.0440413

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1996.0440413

Key Words

Navigation