Skip to main content
Log in

Change in Layer Charge of Smectites and Smectite Layers in Illite/Smectite During Diagenetic Alteration

  • Published:
Clays and Clay Minerals

Abstract

The changes in amount and location of layer charge during diagenetic alteration have been investigated for smectites and smectite layers of illite/smectite interstratified minerals (I/S) by X-ray powder diffraction analysis with various expansion behavior tests: 1) ethylene glycol (EG) solvation (XRD); 2) K-saturation and EG solvation; 3) Li-saturation, heating at 250 °C and glycerol or EG solvation (Greene-Kelly test); and 4) alkylammonium saturation. In the course of low-temperature diagenesis but before the onset of illitization, mean layer charge of smectites continuously increases from approximately 0.56 to 0.73 per O20(OH)4 with increasing depth, and tetrahedral charge also increases continuously from approximately 0.21 to 0.38 per O20(OH)4 (beidellitization). The continuous increase in tetrahedral charge without change in peak intensity and shape suggests that the solid-state Al for Si substitution mechanism appears to predominate within beidellitization. After illitization, the content of the beidellitic layers continuously decreases, while the mean layer charge of expandable layers and the content of illite layers in I/S increase. This suggests that the conversion of a beidellitic layer to an illitic layer preferably occurs during early illitization. Thus, before illitization, beidellite-like layers are formed from precursor smectite, and during the early stage of illitization, the high charged beidellitic layers are probably consumed to form illite layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bethke GM, Altaner SP. 1986. Layer-by-layer mechanism of smectite illitization and application to a new rate law. Clays & Clay Miner 34:136–145.

    Article  Google Scholar 

  • Bethke GM, Vergo N, Altaner SP. 1986. Pathways of smectite illitization. Clays & Clay Miner 34:125–135.

    Article  Google Scholar 

  • Boles JR, Franks SG. 1979. Clay diagenesis in Wilcox sandstones of southwest Texas: Implications of smectite diagenesis on sandstone cementation. J Sed Petrol 49:55–70.

    Google Scholar 

  • Brindley GW. 1966. Ethylene glycol and glycerol complexes of smectites and vermiculites. Clay Miner 6:237–259.

    Article  Google Scholar 

  • Bruce CH. 1984. Smectite dehydration—Its relation to structural development and hydrocarbon accumulation in northern Gulf of Mexico basin. Am Assoc Petrol Geol Bull 68: 637–683.

    Google Scholar 

  • Brusewitz AMB. 1986. Chemical and physical properties of Paleozoic potassium bentonites from Kinnekulle, Sweden. Clays & Clay Miner 34:442–454.

    Article  Google Scholar 

  • Burst JF. 1969. Diagenesis of Gulf Coast clayey sediments and its possible relation to petroleum migration. Am Assoc Petrol Geol Bull 53:73–93.

    Google Scholar 

  • Byström-Brusewitz AM. 1975. Studies on the Li test to distinguish between beidellite and montmorillonite. Proc Intern Clay Conf, 1972, Mexico City. Wilmette, IL: Applied Publishing Ltd. p 419–428.

    Google Scholar 

  • Calvet R, Prost R. 1971. Cation migration into empty octahedral sites and surface properties of clays. Clays & Clay Miner 19:175–186.

    Article  Google Scholar 

  • Cetin K, Huff WD. 1995. Layer charge of the expandable component of illite/smectite in K-bentonite as determined by alkylammonium ion exchange. Clays & Clay Miner 43: 150–158.

    Article  Google Scholar 

  • Christidis G, Dunham AC. 1993. Compositional variations in smectites. 1. Alteration of intermediate volcanic rocks— A case study from Milos-island, Greece. Clay Miner 28: 255–273.

    Article  Google Scholar 

  • Eberl DD. 1978. Reaction series for dioctahedral smectites. Clays & Clay Miner 26:327–340.

    Article  Google Scholar 

  • Eberl DD. 1993. Three zones for illite formation during burial diagenesis and metamorphism. Clays & Clay Miner 41: 26–37.

    Article  Google Scholar 

  • Eberl DD, Srodon J. 1988. Ostwald ripening and interparti-cle-diffraction effects for illite crystals. Am Miner 73: 1335–1345.

    Google Scholar 

  • Eberl DD, Srodon J, Kralik M, Taylor BE, Peterman ZE. 1990. Ostwald ripening of clays and metamorphic minerals. Science 248:474–477.

    Article  Google Scholar 

  • Eberl DD, Srodon J, Northrop HR. 1986. Potassium fixation in smectite by wetting and drying. In: Davis JA, Hayes editors. Geochemical processes at mineral surfaces. Washington, DC: Am Chem Soc p 296–326.

    Google Scholar 

  • Eslinger E, Highsmith P, Albers D, DeMayo B. 1979. Role of iron reduction in the conversion of smectite to illite in bentonites in the disturbed belt, Montana. Clays & Clay Miner 27:327–338.

    Article  Google Scholar 

  • Glaeser R, Mering J. 1968. Homogeneous hydration domains of the smectite. CR Hebd Seanc Acad Sci, Paris 46:436–466.

    Google Scholar 

  • Greene-Kelly R. 1953. Irreversible dehydration in montmorillonite. Part II Clay Miner Bull 2:52–56.

    Article  Google Scholar 

  • Greene-Kelly R. 1955. Dehydration of montmorillonite minerals. Miner Mag 30:604–615.

    Google Scholar 

  • Harward ME, Brindley GW. 1965. Swelling properties of synthetic smectite in relation to lattice substitutions. Clays & Clay Miner 13:209–222.

    Article  Google Scholar 

  • Hausier W, Stanjek H. 1988. A refined procedure for the determination of the layer charge with alkylammonium ions. Clay Miner 23:333–337.

    Article  Google Scholar 

  • Hofmann U, Kiemen R. 1950. Verlust der austauschfahigkeit von lithiumionen an bentonit durch erhitzung. Z Anorg Chem 262:95–99.

    Article  Google Scholar 

  • Howard JJ. 1981. Lithium and potassium saturation of illite/smectite clays from interlaminated shales and sandstones. Clays & Clay Miner 29:136–142.

    Article  Google Scholar 

  • Howard JJ, Roy DM. 1985. Development of layer charge and kinetics of experimental smectite alteration. Clays & Clay Miner 33:81–88.

    Article  Google Scholar 

  • Hower J, Eslinger EV, Hower ME, Perry EA. 1976. Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence. Bull Geol Soc Am 87:725–735.

    Article  Google Scholar 

  • Hower J, Mowatt TC. 1966. The mineralogy of illites and mixed-layer illite/montmorillonites. Am Mineral 51:825–854.

    Google Scholar 

  • Inoue A, Minato H, Utada M. 1978. Mineralogical properties and occurence of illite/montmorillonite mixed layer minerals formed from miocene volcanic glass in Waga-Omono district. Clay Sci 5:123–136.

    Google Scholar 

  • Inoue A, Utada M. 1983. Further investigations of a conversion series of dioctahedral mica/smectites in the Shinzan hydrothermal alteration area, northeast Japan. Clays & Clay Miner 31:401–412.

    Article  Google Scholar 

  • Inoue A, Velde B, Meunier A, Touchard G. 1988. Mechanism of illite formation during smectite-to-illite conversion in a hydrothermal system. Am Mineral 73:1325–1334.

    Google Scholar 

  • Kodama H, Ross GJ. 1974. Effect of layer charge location on potassium exchange and hydration of mica. Am Mineral 59:491–495.

    Google Scholar 

  • Lagaly G, Fernandez-Gonzalez M, Weiss A. 1976. Problems in layer-charge determination of montmorillonites. Clay Miner 11:173–187.

    Article  Google Scholar 

  • Lagaly G, Weiss A. 1969. Determination of the layer charge in mica-type layer silicates. Proc Int Clay Conf, Tokyo, 1969. p 173–187.

    Google Scholar 

  • Lanson B, Champion D. 1991. The I/S- to illite reaction in the late stage diagenesis. Am J Sci 291:473–506.

    Article  Google Scholar 

  • Machajdik D, Cicel B. 1981. Potassium- and Ammonium-treated montmorillonites. II. Calculation of characteristic layer charge. Clays & Clay Miner 29:47–52.

    Article  Google Scholar 

  • Malla PB, Douglas LA. 1987a. Identification of expanding layer silicates: Layer charge vs. expansion properties. Proc Internat Clay Conf p 277–283.

    Google Scholar 

  • Malla PB, Douglas LA. 1987b. Layer charge properties of smectites and vermiculites: Tetrahedral vs. octahedral. Soil Sci Soc Am J 51:1362–1366.

    Article  Google Scholar 

  • Malla PB, Douglas LA. 1987c. Problems in identification of montmorillonite and beidellite. Clays & Clay Miner 35: 232–236.

    Article  Google Scholar 

  • McDowell SD, Elders WA. 1980. Authigenic layer silicate minerals in borehole Elmore 1, Saltan Sea geothermal field, California, U.S.A.. Contrib Mineral Petrol 74:293–310.

    Article  Google Scholar 

  • Meunier A, Velde B. 1989. Solid solutions in I/S mixed-layer minerals and illite. Am Mineral 74:1106–1112.

    Google Scholar 

  • Nadeau PH, Bain DC. 1986. Composition of some smectites and diagenetic illitic clays and implications for their origin. Clays & Clay Miner 34:455–464.

    Article  Google Scholar 

  • Nadeau PH, Reynolds RC. 1981. Burial and contact meta-morphism in the Mancos shale. Clays & Clay Miner 29: 249–259.

    Article  Google Scholar 

  • Nadeau PH, Wilson MJ, McHardy WJ, Tait JM. 1985a. The conversion of smectite to illite during diagenesis: Evidence from some illitic clays from bentonites and sandstones. Miner Mag 49:393–400.

    Article  Google Scholar 

  • Nadeau PH, Farmer VC, McHardy WJ, Bain DC. 1985b. Compositional variations of the Unterrupsroth beidellite. Am Mineral 70:1004–1010.

    Google Scholar 

  • Nishida S, Tsuda K, Ichimura R. 1966. On the Neogene deposits of the northern part of the Fossa Magna region.— Studies of the so-called “Nambayama Formation” Part I-. Sci Rep Niigata Univ 1:15–20 (in Japanese).

    Google Scholar 

  • Olis AC, Malla PB, Douglas LA. 1990. The rapid estimation of the layer charges of 2:1 expanding clays from a single alkylammonium ion expansion. Clay Miner 25:39–50.

    Article  Google Scholar 

  • Perry E, Hower J. 1970. Burial diagenesis in Gulf Coast pelitic sediments. Clays & Clay Miner 18:165–177.

    Article  Google Scholar 

  • Reynolds RC, Hower J. 1970. The nature of interlayering in mixed-layer illite-montmorillonites. Clays & Clay Miner 18:25–36.

    Article  Google Scholar 

  • Sato T, Watanabe T. 1989. Diagenetic alteration of Neogene sedimentary rocks in the No district, Niigata Prefecture. J Jpn Assoc Miner Petrol Econ Geol 84:259–269 (in Japanese).

    Article  Google Scholar 

  • Sato T, Watanabe T, Otsuka R. 1992. Effects of layer charge, charge location, and energy change on expansion properties of dioctahedral smectites. Clays & Clay Miner 40:103–113.

    Article  Google Scholar 

  • Srodon J, Elsass F, McHardy WJ, Morgan DJ. 1992. Chemistry of illite-smectite inferred from TEM measurements of fundamental particles. Clay Miner 27:137–158.

    Article  Google Scholar 

  • Srodon J, Morgan DJ, Eslinger EV, Eberl DD, Karlinger MR. 1986. Chemistry of illite/smectite and end-member illite. Clays & Clay Miner 34:368–378.

    Article  Google Scholar 

  • Stanjek H, Friedrich R. 1986. The determination of layer charge by curve-fitting of Lorentz- and polarization-corrected X-ray diagrams. Clay Miner 21:183–190.

    Article  Google Scholar 

  • Steiner A. 1968. Clay minerals in hydrothermally altered rocks at Wairakei, New-Zealand. Clays & Clay Miner 16: 193–213.

    Article  Google Scholar 

  • Stul MS, Mortier WJ. 1974. The heterogeneity of the charge density in montmorillonites. Clays & Clay Miner 22:391–396.

    Article  Google Scholar 

  • Suquet H, De La Calle C, Pezerat H. 1975. Swelling and structural organization of saponite. Clays & Clay Miner 23: 1–9.

    Article  Google Scholar 

  • Suquet H, Iiyama JT, Kodama H, Pezerat H. 1977. Synthesis and swelling properties of saponites with increasing layer charge. Clays & Clay Miner 25:231–242.

    Article  Google Scholar 

  • Velde B, Brusewitz AM. 1982. Metasomatic and nonmeta-somatic low grade metamorphism of Ordovician meta-ben-tonites in Sweden. Geochim Cosmochim Acta 46:447–452.

    Article  Google Scholar 

  • Velde B, Brusewitz AM. 1986. Compositional variation in component layers in natural illite/smectite. Clays & Clay Miner 34:651–657.

    Article  Google Scholar 

  • Watanabe T. 1988. The structural model of illite/smectite in-terstratified mineral and the diagram for its identification. Clay Sci 7:97–114.

    Google Scholar 

  • Whitney G. 1992. Dioctahedral smectite reactions at elevated temperatures: Effects of K-availability, Na/K ratio and ionic strength. Appl Clay Sci 7:97–112.

    Article  Google Scholar 

  • Whitney G, Northrop R. 1988. Experimental investigation of the smectite to illite reaction: Dual reaction mechanisms and oxygen-isotope systematics. Am Mineral 73:77–90.

    Google Scholar 

  • Whitney G, Velde B. 1993. Changes in particle morphology during illitization—An experimental study. Clays & Clay Miner 41:209–218.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, T., Murakami, T. & Watanabe, T. Change in Layer Charge of Smectites and Smectite Layers in Illite/Smectite During Diagenetic Alteration. Clays Clay Miner. 44, 460–469 (1996). https://doi.org/10.1346/CCMN.1996.0440403

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1996.0440403

Key Words

Navigation