Skip to main content
Log in

Clay-Mineral Provenance, Sediment Dispersal Patterns, and Mudrock Diagenesis in the Nankai Accretionary Prism, Southwest Japan

  • Published:
Clays and Clay Minerals

Abstract

Offscraped strata within the toe of Nankai accretionary prism display an overall facies pattern of thickening and coarsening upward. Detrital clay minerals within the Quaternary trench-wedge facies are dominated by illite; chlorite is the second-most abundant clay mineral, followed by smectite. Relative mineral percentages change only modestly with depth. The hemipelagic clay-mineral population is virtually identical to clays washed from turbidite matrix, and different size fractions (<2 μm and 2–6 μm) show nominal amounts of mineral partitioning. Smectite content increases beneath the trench-wedge deposits, where the upper subunit of the Shikoku Basin stratigraphy (late Pliocene and early Pleistocene) includes abundance of volcanic ash. Syneruptive, subaerial chemical weathering of volcanic source rocks, together with in situ alteration of disseminated glass shards, caused the increase in smectite. Smectite begins a monotonic transformation to illite/smectite (I/S) mixed-layer clay at ~555 mbsf and an estimated temperature of ~65 °C. Ordered (R = 1) I/S interlayering first appears at ~1220 mbsf (<2 μm size fraction) and ~1100 mbsf (<0.2 μm size fraction). The illitization gradient coincides with a reduction in pore-water chlorinity, but depth-related changes in bulk mudstone geochemistry (K2O, Rb) are subtle. The absolute abundances of discrete smectite and I/S appear to be insufficient to account for the magnitude of pore-water dilution via in situ dehydration reactions. Instead, pore water probably was transported to Site 808, either from sources located deeper in the accretionary prism, where bulk mudstone porosities are lower, or from strike-parallel sources where mudstones originally deposited in the Shikoku Basin might contain higher percentages of smectite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashi J, Taira A. 1993. Thermal structure of the Nankai accretionary prism as inferred from the distribution of gas hydrate BSRs. In: Underwood MB, editor, Thermal evolution of the Tertiary Shimanto Belt, Southwest Japan: An example of ridge-trench interaction. Geol Soc Am Spec Paper 273:137–149.

    Google Scholar 

  • Bethke CM, Altaner SP. 1986. Layer-by-layer mechanism of smectite illitization and application to a new rate law. Clays & Clay Miner 34:136–145.

    Article  Google Scholar 

  • Bethke CM, Vergo N, Altaner SP. 1986. Pathways of smectite illitization. Clays & Clay Miner 34:125–135.

    Article  Google Scholar 

  • Biscaye PE. 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol Soc Am Bull 76:803–831.

    Article  Google Scholar 

  • Blake, MC, Jr., Jayko AS, McLaughlin RJ. 1985. Tectonostratigraphic terranes of the northern Coast Ranges, California. In: Howell DG, editor. Tectonostratigraphic terranes of the Circum-Pacific Region, Circum-Pacific Council for Energy & Min. Res. Earth Sci Series 1:159–172.

    Google Scholar 

  • Boggs, S, Jr. 1984. Quaternary sedimentation in the Japan arc-trench system. Geol Soc Am Bull 95:669–685.

    Article  Google Scholar 

  • Bruce CH. 1984. Smectite dehydration—its relation to structural development and hydrocarbon accumulation in northern Gulf of Mexico basin. Am Assoc Pet Geol Bull 68: 673–683.

    Google Scholar 

  • Burst JE 1969. Diagenesis of Gulf Coast clayey sediments and its possible relation to petroleum migration. Am Assoc Pet Geol Bull 53:73–93.

    Google Scholar 

  • Cadet J-P, Kobayashi K, Aubouin J, Boulegue J, Déplus C, Dulsais J, von Huene R, Jolivet L, Kanazawa T, Kasahara J, Koizumi K, Lallemand S, Nakamura Y, Pautot G, Suyehiro K, Tani S, Tokuyama H, Yamazaki T 1987. The Japan Trench and its juncture with the Kuril Trench: Cruise results of the Kaiko project, Leg 3. Earth & Planet Sci Lett 83:267–284.

    Article  Google Scholar 

  • Chamley H. 1980. Clay sedimentation and paleoenvironment in the Shikoku Basin since the middle Miocene (Deep Sea Drilling Project Leg 58, North Philippine Sea). In: Klein Gde V, Kobayashi JW, editors. Init. Repts. DSDP Washington, D.C.: U.S. Govt. Printing Office. 58:669–681.

    Google Scholar 

  • Chamley H, Cadet J-P, Charvet J. 1986. Nankai Trough and Japan Trench late Cenozoic paleoenvironments deduced from clay mineralogy data. In: Kagami H, Karig DE, Coulbourn WT, editors. Init. Repts. DSDP Washington, D.C.: U.S. Govt. Printing Office. 87:633–642.

    Google Scholar 

  • Chamot-Rooke N, Renard V, Le Pichon X. 1987. Magnetic anomalies in the Shikoku Basin: A new interpretation. Earth & Planet Sci Lett 83:214–228.

    Article  Google Scholar 

  • Colten-Bradley VA. 1987. Role of pressure in smectite dehydration—effects on geopressure and smectite-to-illite transformation. Am Assoc Pet Geol Bull 71:1414–1427.

    Google Scholar 

  • Cook HE, Zemmels I, Matti JC. 1975. X-ray mineralogy data, far western Pacific, Leg 31 Deep Sea Drilling Project. In: Karig DE, Ingle, Jr. JC, et al., editors. Init. Repts. DSDP Washington, D.C.: U.S. Govt. Printing Office. 31:883–895.

    Google Scholar 

  • Coulbourn WT. 1986. Sedimentologic summary, Nankai Trough Sites 582 and 583, and Japan Trench Site 584. In: Kagami H, Karig DE, Coulbourn WT, editors. Init. Repts. DSDP Washington, D.C.: U.S. Govt. Printing Office, 87: 909–926.

    Google Scholar 

  • De Rosa R, Zuffa GG, Taira A, Leggett JK. 1986. Petrography of trench sands from the Nankai Trough, southwest Japan: Implications for long-distance turbidite transportation. Geol Mag 123:477–486.

    Article  Google Scholar 

  • Donnelly TW. 1980. Chemical composition of deep sea sediments—Sites 9 through 425, Legs 2 through 54. In: Rosendahl BR, Hekinian R, et al., editors. Init. Repts. DSDP Washington, D.C.:U.S. Govt. Printing Office. 54:899–949.

    Google Scholar 

  • Dypvik H. 1983. Clay mineral transformations in Tertiary and Mesozoic sediments from North Sea. Am Assoc Pet Geol Bull 67:160–165.

    Google Scholar 

  • Eberl DD. 1978. The reaction of montmorillonite to mixedlayer clay: The effect of interlay er alkali and alkaline earth cations. Geochim Cosmochim Acta 42:1–7.

    Article  Google Scholar 

  • Eberl D, Hower J. 1976. Kinetics of illite formation. Geol Soc Am Bull 87:1326–1330.

    Article  Google Scholar 

  • Freed RL, Peacor DR. 1989a. Variability in temperature of the smectite/illite reaction in Gulf Coast sediments. Clay Miner 24:171–180.

    Article  Google Scholar 

  • Freed RL, Peacor DR. 1989b. Geopressured shale and sealing effect of smectite to illite transition. Am Assoc Pet Geol Bull 73:1223–1232.

    Google Scholar 

  • Gieskes JM, Gamo T, Kastner M. 1993. Major and minor element geochemistry of interstitial waters of Site 808, Nankai Trough: An overview. In: Hill IA, Taira A, Firth JV, et al. editors. Proc. ODP, Sci. Results Ocean Drilling Program, College Station. 131:387–396.

    Google Scholar 

  • Gorsline DS. 1984. A review of fine-grained sediment origins, characteristics, transpoit and deposition. In: Stow DAV, Piper DJW, editors. Fine-grained sediments: Deep water processes and facies. Oxford: Blackwell Sci Publ. p 17–34.

    Google Scholar 

  • Gorsline DS. 1985. Some thoughts on fine-grained sediment transport and deposition. Sed Geol 41:113–130.

    Article  Google Scholar 

  • Hansen PL, Lindgreen H. 1989. Mixed-layer illite/smectite diagenesis in Upper Jurassic claystones from the North Sea and onshore Denmark. Clay Miner 24:197–213.

    Article  Google Scholar 

  • Hathon EG. 1992. X-ray diffraction and transmission electron microscopy study of the surface charge on the illite and smectite components of illite/smectite mixed-layer clays, [unpublished Ph.D. Dissertation]. Columbia: University of Missouri. 215 p.

    Google Scholar 

  • Hathon EG, Underwood MB. 1991. Clay mineralogy and chemistry as indicators of hemipelagic sediment dispersal south of the Aleutian arc. Marine Geol 97:145–166.

    Article  Google Scholar 

  • Hibbard JP, Karig DE. 1990. Alternative plate model for the Early Miocene evolution of the SW Japan margin. Geology 18:170–174.

    Article  Google Scholar 

  • Hower J, Eslinger EV, Hower ME, Perry EA. 1976. Mechanism of burial metamorphism of argillaceous sediment: 1. mineralogical and chemical evidence. Geol Soc Am Bull 87:725–737.

    Article  Google Scholar 

  • Huang W-L, Longo JM, Pevear DR. 1993. An experimentally derived kinetic model for smectite-to-illite conversion and its use as a geothermometer. Clays & Clay Miner 41: 162–177.

    Article  Google Scholar 

  • Inoue A, Bouchet A, Velde B, Meunier A. 1989. Convenient technique for estimating smectite layer percentage in randomly interstratified illite/smectite minerals. Clays & Clay Miner 37:227–234.

    Article  Google Scholar 

  • Jennings S, Thompson GR. 1986. Diagenesis of Plio-Pleistocene sediments of the Colorado River Delta, southern California. J Sed Pet 56:89–98.

    Google Scholar 

  • Kagami H, Karig DE, Coulbourn WT, Bray CJ, Charvet J. 1986. Init. Repts. DSDP Washington, D.C.: U.S. Govt. Printing Office. 87:985.

    Google Scholar 

  • Karig DE, Ingle, Jr. JC, Haile N, Bouma AH, Moore JC, White SM, MacGregor I, Ellis H, Ujiie H, Ling HY, Koizumi I, Watanabe T, Yasui M. 1975. In: Karig DE, Ingle Jr, JC, editors. Init. Repts. DSDP Washington, D.C.: U.S. Govt. Printing Office. 31:927.

    Google Scholar 

  • Kastner M, Elderfield H, Jenkins WJ, Gieskes JM, Gamo T. 1993. Geochemical and isotopic evidence for fluid flow in the western Nankai subduction zone, Japan. In: Hill IA, Taira A, Firth JV, et al., editors. Proc. ODP, Sci. Results. Ocean Drilling Program, College Station. 131:397–416.

    Google Scholar 

  • Kawahata H, Fujioka K, Ishizuka T. 1986. Sediments and interstitial water at Sites 582 and 584, the Nankai Trough and the Japan Trench landward slope. In: Kagami H, Karig DE, Coulbourn WT, et al., editors. Init. Repts. DSDP. Washington, D.C.:U.S. Govt. Printing Office. 87:865–875.

    Google Scholar 

  • Klein G de V, Kobayashi JW, Chamley H, Curtis D, Dick H, Echols DJ, Fountain DM, Kinoshite H, March NG, Mizuno A, Nisterenko GV, Okada H, Sloan JR, Waples D, White SM. 1980. Init. Repts. DSDP Washington, D.C.: U.S. Govt. Printing Office. 58:1022 p.

  • Le Pichon X, Iiyama T, Chamley H, Charvet J, Faure M, Fujimoto H, Furuta T, Ida Y, Kagami H, Lallemant S, Leggett J, Murata A, Okada H, Rangin C, Renard V, Taira A, Tokuyama H. 1987a. Nankai Trough and the fossil Shikoku Ridge: Results of Box 6 Kaiko survey. Earth & Planet Sci Lett 83:186–198.

    Article  Google Scholar 

  • Le Pichon X, Iiyama T, Chamley H, Charvet J, Faure M, Fujimoto H, Furuta T, Ida Y, Kagami H, Lallemant S, Leggett J, Murata A, Okada H, Rangin C, Renard V, Taira A, Tokuyama H. 1987b. The eastern and western ends of Nankai Trough: Results of Box 5 and Box 7 Kaiko survey. Earth & Planet Sci Lett 83:199–213.

    Article  Google Scholar 

  • Marsaglia KM, Ingersoll RV, Packer BM. 1992. Tectonic evolution of the Japanese Islands as reflected in modal compositions of Cenozoic forearc and backarc sand and sandstone. Tectonics 11:1028–1044.

    Article  Google Scholar 

  • Masuda H, Tanaka H, Gamo T, Soh W, Taira A. 1993. Majorelement chemistry and alteration mineralogy of volcanic ash. Site 808 in the Nankai Trough. In: Hill IA, Taira A, Firth JV, et al., editors. Proc. ODP, Sci. Results Ocean Drilling Program, College Station. 131:175–184.

    Google Scholar 

  • McManus DA. 1991. Suggestions for authors whose manuscripts include quantitative clay mineral analysis by X-ray diffraction. Mar Geol 98:1–5.

    Article  Google Scholar 

  • Minai Y, Matsumoto R, Tominaga T. 1986. Geochemistry of deep sea sediments from the Nankai Trough, the Japan Trench, and adjacent regions. In: Kagami H, Karig DE, Coulbourn WT, et al., editors. Init. Repts. DSDP Washington, D.C.:U.S. Govt. Printing Office. 87:643–657.

    Google Scholar 

  • Moore DM, Reynolds, RC, Jr. 1989. X-ray diffraction and the identification and analysis of clay minerals. New York: Oxford University Press. 332 p.

    Google Scholar 

  • Moore GF, Shipley TH, Stoffa PL, Karig DE, Taira A, Kuramoto S, Tokuyama H, Suyehiro K. 1990. Structure of the Nankai Trough accretionary zone from multichannel seismic reflection data. J Geophys Res 95:8753–8765.

    Article  Google Scholar 

  • Moore JC. 1989. Tectonics and hydrogeology of accretionary prisms: Role of the décollement zone. J Struc Geol 11: 95–106.

    Article  Google Scholar 

  • Moore JC, Karig DE. 1976. Sedimentology, structural geology, and tectonics of the Shikoku subduction zone, southwestern Japan. Geol Soc Am Bull 87:1259–1268.

    Article  Google Scholar 

  • Moore JC, Byrne T, Plumley PW, Reid M, Gibbons H, Coe RS. 1983. Paleogene evolution of the Kodiak Islands, Alaska: Consequences of ridge-trench interaction in a more southerly latitude. Tectonics 2:265–293.

    Article  Google Scholar 

  • Moore JC, Mascle A, Taylor E, Andreieff P, Alvarez F, Barnes R, Beck C, Behrmann J, Blanc G, Brown K, Clark M, Dolan J, Fisher A, Gieskes J, Hounslow M, McLellan P, Moran K, Ogawa Y, Sakai T, Schoonmaker J, Vrolijk P, Wilkens R, Williams G. 1988. Tectonics and hydrogeology of the northern Barbados Ridge: Results from Ocean Drilling Program Leg 110. Geol Soc Am Bull 100:1578–1593.

    Article  Google Scholar 

  • Moore JC, Vrolijk P. 1992. Fluids in accretionary prisms. Rev Geophys 30:113–135.

    Article  Google Scholar 

  • Nakamura K, Renard V, Angelier J, Azema J, Bourgois J, Deplus C, Fujioka K, Hamano Y, Huchon P, Kinoshita H, Labaume P, Ogawa Y, Seno T, Takeuchi A, Tanahashi M, Uchiyama A, Vigneresse J-L. 1987. Oblique and near collision subduction, Sagami and Suruga Troughs—preliminary results of the French-Japanese 1984 Kaiko cruise, Leg 2. Earth & Planet Sci Lett 83:229–242.

    Article  Google Scholar 

  • Oba N. 1977. Emplacement of granitic rocks in the Outer Zone of southwest Japan and geological significance. J Geol 85:383–393.

    Article  Google Scholar 

  • Ogawa Y, Horiuchi K, Taniguchi H, Naka J. 1985. Collision of the Izu arc with Honshu and the effects of oblique subduction in the Miura-Boso Peninsulas. Tectonophysics 119: 349–379.

    Article  Google Scholar 

  • Ogawa Y, Taniguchi H. 1988. Geology and tectonics of the Miura-Boso Peninsulas and the adjacent area. Modern Geol 12:147–168.

    Google Scholar 

  • Okuda Y, Honza E. 1988. Tectonic evolution of the Seinan (SW) Japan fore-arc and accretion in the Nankai Trough. Modern Geol 12:411–434.

    Google Scholar 

  • Perry E, Hower J. 1970. Burial diagenesis in Gulf Coast pelitic sediments. Clays & Clay Miner 18:165–177.

    Article  Google Scholar 

  • Pickering KT, Underwood MB, Taira A. 1992. Open-ocean to trench turbidity-current flow in the Nankai Trough: Flow collapse and reflection. Geology 20:1099–1102.

    Article  Google Scholar 

  • Pickering KT, Underwood MB, Taira A. 1993a. Stratigraphie synthesis of the DSDP-ODP sites in the Shikoku Basin, Nankai Trough, and accretionary prism. In: Hill IA, Taira A, Firth JV, et al., editors. Proc. ODP, Sci. Results Ocean Drilling Program, College Station. 131:313–330.

    Google Scholar 

  • Pickering KT, Marsh NG, Dickie B. 1993b. Data Report: Inorganic major, trace, and rare earth element analyses of the muds and mudstones from Site 808. In: Hill IA, Taira A, Firth JV, et al., editors. Proc. ODP, Sci. Results Ocean Drilling Program, College Station. 131:427–450.

    Google Scholar 

  • Piper DJW, von Huene R, Duncan JR. 1973. Late Quaternary sedimentation in the active eastern Aleutian Trench. Geology 1:19–22.

    Article  Google Scholar 

  • Pouclet A, Fujioka K, Charvet J, Cadet J-P. 1986. Petrography and geochemistry of volcanic ash layers from Leg 87A, Nankai Trough (south Japan). In: Kagami H, Karig DE, Coulbourn WT, et al., editors. Init. Repts. DSDP. Washington, D.C.: U.S. Govt. Printing Office. 87:695–701.

    Google Scholar 

  • Pytte AM, Reynolds RC. 1989. The thermal transformation of smectite to illite. In: Naeser ND, McCulloh TH, editors. Thermal history of sedimentary basins. New York: Springer-Verlag. p 133–140.

    Chapter  Google Scholar 

  • Ramseyer K, Boles JR. 1986. Mixed-layer illite/smectite minerals in Tertiary sandstones and shales, San Joaquin Basin, California. Clays & Clay Miner 34:115–124.

    Article  Google Scholar 

  • Reynolds, RC, Jr., Hower J. 1970. The nature of interlayering in mixed-layer illite-montmorillonites. Clays & Clay Miner 18:25–36.

    Article  Google Scholar 

  • Roberson HE, Lahann RW. 1981. Smectite to illite conversion rates: Effects of solution chemistry. Clays & Clay Miner 29:129–135.

    Article  Google Scholar 

  • Schweller WJ, Kulm LD. 1978. Depositional patterns and channelized sedimentation in active eastern Pacific trenches. In: Stanley DJ, Kelling G, editors. Sedimentation in submarine canyons, fans, and trenches. Stroudsburg: Dowden, Hutchinson, and Ross, p 323–350.

    Google Scholar 

  • Schoonmaker J, Mackenzie FT, Speed RC. 1986. Tectonic implications of illite/smectite diagenesis, Barbados accretionary prism. Clays & Clay Miner 34:465–472.

    Article  Google Scholar 

  • Shibata K, Ishihara S. 1979. Initial 87Sr/86Sr ratios of plutonic rocks from Japan. Contrib Mineral Petrol 70:381–390.

    Article  Google Scholar 

  • Shimamura K. 1989. Topography and sedimentary facies of the Nankai deep sea channel. In: Taira A, Masuda F, editors. Sedimentary faciès in the active plate margin. Tokyo: Terra Sci Publ Co. p 529–556.

    Google Scholar 

  • Shipboard Scientific Party. 1991. Site 808. In: Taira A, Hill I, Firth J, et al. editors. Proc. ODP, Initial Results Ocean Drilling Program, College Station. 131:71–269.

    Google Scholar 

  • Soh W, Pickering KT, Taira A, Tokuyama H. 1991. Basin evolution in the arc-arc Izu Collision Zone, Mio-Pliocene, Miura Group, central Japan. J Geol Soc London 148:317–330.

    Article  Google Scholar 

  • Srodon J. 1980. Precise identification of illite/smectite interstratifications by X-ray powder diffraction. Clays & Clay Miner 28:401–411.

    Article  Google Scholar 

  • Srodon J. 1981. X-ray identification of randomly interstratified illite-smectite in mixtures with discrete illite. Clay Miner 16:297–304.

    Article  Google Scholar 

  • Starkey HC, Blackmon PD, Hauff PC. 1984. The routine mineralogical analysis of clay bearing samples. U.S. Geol Surv Bull 1563:1–32.

    Google Scholar 

  • Taira A, Niitsuma N. 1986. Turbidite sedimentation in the Nankai Trough as interpreted from magnetic fabric, grain size, and detrital modal analyses. In: Kagami H, Karig DE, Coulbourn WT, et al., editors. Init. Repts. DSDP. Washington, D.C.: U.S. Govt. Printing Office. 87:611–632.

    Google Scholar 

  • Taira A, Hill I, Firth J, Berner U, Bruckmann W, Byrne T, Chabernaud T, Fisher A, Foucher J-P, Gamo T, Gieskes J, Hyndman R, Karig D, Kastner M, Kato Y, Lallemant S, Lu R, Maltman A, Moore G, Moran K, Olaffson G, Owens W, Pickering K, Siena F, Taylor E, Underwood M, Wilkinson C, Yamano M, Zhang J. 1992. Proc. ODP, Initial Reports Ocean Drilling Program, College Station. 131:434 p.

  • Taira A, et al. 1992. Sediment deformation and hydrogeology of the Nankai Trough accretionary prism: Synthesis of shipboard results of ODP Leg 131. Earth & Planet Sci Lett 109:431–450.

    Article  Google Scholar 

  • Taira A, Katto J, Tashiro M, Okamura M, Kodama K. 1988. The Shimanto Belt in Shikoku, Japan: Evolution of cretaceous to Miocene accretionary prism. Mod Geol 12:5–46.

    Google Scholar 

  • Terakado Y, Shimizu H, Masuda A. 1988. Nd and Sr isotopic variations in acidic rocks formed under a pecular tectonic environment in Miocene SW Japan. Contrib Mineral Petrol 99:1–10.

    Article  Google Scholar 

  • Toriumi M, Arai T 1989. Metamorphism of the Izu-Tanzawa collision zone. Tectonophysics 160:293–303.

    Article  Google Scholar 

  • Tribble JS. 1990. Clay diagenesis in the Barbados accretionary complex: Potential impact on hydrology and subduction dynamics. In: Moore JC, Mascle A, Taylor E, Underwood MB, editors. Proc. ODP, Sci. Results Ocean Drilling Program, College Station. 110:97–110.

    Google Scholar 

  • Underwood MB. 1986. Transverse infilling of the central Aleutian Trench by unconfined turbidity currents. Geo-Mar Lett 6:7–13.

    Article  Google Scholar 

  • Underwood MB. 1991. Submarine canyons, unconfined turbidity currents, and sedimentary bypassing of forearc regions. Rev Aquatic Sci 4:149–200.

    Google Scholar 

  • Underwood MB, Norville C. 1986. Deposition of sand in a trench-slope basin by unconfined turbidity currents. Mar Geol 71:383–392.

    Article  Google Scholar 

  • Underwood MB, Orr R, Pickering K, Taira A. 1993a. Provenance and dispersal patterns of sediments in the turbidite wedge of Nankai Trough. In: Hill IA, Taira A, Firth JV, et al., editors. Proc. ODP, Sci. Results Ocean Drilling Program, College Station. 131:15–34.

    Google Scholar 

  • Underwood MB, Pickering K, Gieskes JM, Kastner M, Orr R. 1993b. Sediment geochemistry, clay mineralogy, and diagenesis: A synthesis of data from Leg 131, Nankai Trough. In: Hill IA, Taira A, Firth JV, et al., editors. Proc. ODP, Sci. Results Ocean Drilling Program, College Station. 131:343–363.

    Google Scholar 

  • Velde B, Iijima A. 1988. Comparison of clay and zeolite mineral occurrences in Neogene age sediments from several deep wells. Clays & Clay Miner 36:337–342.

    Article  Google Scholar 

  • Velde B, Espitalie J. 1989. Comparison of kerogen maturation and illite/smectite composition in diagenesis. J Petrol Geol 12:103–110.

    Article  Google Scholar 

  • Velde B, Suzuki T, Nicot E. 1986. Pressure-temperaturecomposition of illite/smectite mixed-layer minerals: Niger Delta mudstones and other examples. Clays & Clay Miner 34:435–441.

    Article  Google Scholar 

  • von Huene R, Arthur MA. 1982. Sedimentation across the Japan Trench off northern Honshu Island. In: Leggett JK, editor. Trench-forearc geology. Geol Soc London Spec Publ 10:27–48.

    Article  Google Scholar 

  • Vrolijk P. 1990. On the mechanical role of smectite in subduction zones. Geology 18:703–707.

    Article  Google Scholar 

  • Vrolijk P, Fisher A, Gieskes J. 1991. Geochemical and geothermal evidence for fluid migration in the Barbados accretionary prism (ODP Leg 110). Geophys Res Lett 18: 947–950.

    Article  Google Scholar 

  • Walker JR, Thompson GR. 1990. Structural variations in chlorite and illite in a diagenetic sequence from the Imperial Valley, California. Clays & Clay Miner 38:315–321.

    Article  Google Scholar 

  • Whitney G. 1990. Role of water in the smectite-to-illite reaction. Clays & Clay Miner 38:343–350.

    Article  Google Scholar 

  • Yamano M, Uyeda S, Aoki Y, Shipley TH. 1982. Estimates of heat flow derived from gas hydrates. Geology 10:339–343.

    Article  Google Scholar 

  • Yamano M, Honda S, Uyeda S. 1984. Nankai Trough: A hot trench? Mar Geophys Res 6:187–203.

    Article  Google Scholar 

  • Yamano M, Foucher J-P, Kinoshita M, Fisher A, Hyndman RD. ODP Leg 131 Shipboard Scientific Party. 1992. Heat flow and fluid flow regime in the western Nankai accretionary prism. Earth & Planet Sci Lett 109:451–462.

    Google Scholar 

  • Yau Y-C, Peacor DR, McDowell SD. 1987. Smectite-to-illite reactions in Saltan Sea shales: A transmission and analytical electron microscopy study. J Sed Pet 57:335–342.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Underwood, M.B., Pickering, K.T. Clay-Mineral Provenance, Sediment Dispersal Patterns, and Mudrock Diagenesis in the Nankai Accretionary Prism, Southwest Japan. Clays Clay Miner. 44, 339–356 (1996). https://doi.org/10.1346/CCMN.1996.0440304

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1996.0440304

Key Words

Navigation