Clays and Clay Minerals

, Volume 43, Issue 5, pp 615–621 | Cite as

Spectroscopic Approach for Investigating the Status and Mobility of Ti in Kaolinitic Materials

  • Nathalie Malengreau
  • Jean-Pierre Muller
  • Georges Calas


The form under which Ti occurs in kaolinitic materials from various environments has been investigated using second derivative diffuse reflectance spectroscopy. The position of the absorption edge may be used as a diagnostic band to determine Ti-phases (anatase, rutile, Ti-gels). Ti-oxides may be detected in kaolins, down to 0.1 wt. % TiO2. Diffuse reflectance spectra show the presence of Ti-gel-like phases occluded in sedimentary kaolinite particles. These phases, which record conditions at the time of kaolinite growth, constitute the first direct evidence of Ti mobility at the scale of mineral assemblages and question the substitution of Ti for Al in kaolinite. The nature of the Ti-oxides associated with kaolinite particles gives some constraints on the temperature conditions of hydrothermal kaolins, the evolution of sedimentary kaolin during basin diagenesis and the source of parental material in soil kaolins.

Key Words

Diffuse reflectance spectroscopy Kaolins Ti-mobility Ti-status 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aniel B., and J. Leroy. 1985. The reduced uraniferous mineralizations associated with the volcanic rocks of the Sierra Pena Bianca (Chihuahua, Mexico). Amer. Mineral. 70: 1290–1297.Google Scholar
  2. Bain, D. C. 1976. A titanium-rich soil clay. J. Soil Sci. 27: 68–70.CrossRefGoogle Scholar
  3. Berrow, M. L., M. J. Wilson, and G. A. Reaves. 1978. Origin of extractable titanium and vanadium in the A horizons of Scottish podzols. Geoderma 21: 89–103.CrossRefGoogle Scholar
  4. Beauvais, A. and F. Colin. 1993. Formation and transformation processes of iron duricrust systems in tropical humid environment. Chem. Geol. 106: 77–101.CrossRefGoogle Scholar
  5. Bevan H., S. V. Dawes, and R. A. Ford. 1958. The electronic spectrum of titanium dioxide. Spectrochim. Acta 13: 43–49.CrossRefGoogle Scholar
  6. Brimhall, G. H. and W.E. Dietrich. 1987. Constitutive mass balance relations between chemical composition, volume, density, porosity and strain in metasomatic hydrochemical systems: results on weathering and pedogenesis. Geochim. Cosmochim. Acta 51: 567–587.CrossRefGoogle Scholar
  7. Bulent, E. Y. 1986. Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters. J. Mat. Sci. 21: 1087–1092.CrossRefGoogle Scholar
  8. Burns, R. G. 1985. Electronic spectra of minerals. In Chemical Bonding and Spectroscopy in Mineral Chemistry. F. J. Berry and D. J. Vaughan, eds. London, New York: Chapman and Hall, 63–101.CrossRefGoogle Scholar
  9. Calas, G. 1977. Les phénomènes d’altération hydrothermale et leur relation avec les minéralisations uranifères en milieu volcanique: le cas des ignimbrites tertiaires de la Sierra de Peña Bianca, Chihuahua (Mexique). Sci. Géol. Bull. 30: 3–18.Google Scholar
  10. Delineau T., T. Allard, J-P. Muller, O. Barres, J. Yvon, and J-M. Cases. 1994. FTIR reflectance vs. EPR studies of structural iron in kaolinites. Clays & Clay Miner. 42: 308–320.CrossRefGoogle Scholar
  11. Dolcater, D. L., J. K. Syers, and M. L. Jackson. 1970. Titanium as free oxide and substituted forms in kaolinites and other clay minerals. Clays & Clay Miner. 18: 71–79.CrossRefGoogle Scholar
  12. Dumon, J-C. 1976. Action d’acides organiques divers sur des minéraux titanés (ilménite et rutile). Comparaison de leur pouvoir d’extraction du titane avec celui d’acides minéraux. Bull. Soc. Géol. Fr. 18: 75–79.CrossRefGoogle Scholar
  13. Faivre P., V. Herrera, L. Burgos, L. Jimenez, C. Molina, and E. Ruiz. 1983. Estudia general de suelos de la Comisaria de Vichada. Llanos Orientales de Colombia. I.G.A.C., Bogota, 462 pp.Google Scholar
  14. Fitzpatrick, R. W., J. Le Roux, and U. Schwertmann. 1978. Amorphous and crystalline titanium and iron-titanium oxides in synthetic preparations, at near ambient conditions, and in soil clays. Clays & Clay Miner. 26: 189–201.CrossRefGoogle Scholar
  15. Gaviria, S. 1993. Evolution minéralogique et géochimique du fer et de l’aluminium dans des sols ferrallitiques hydro-morphes des Llanos Orientales de Colombie. Les états précoces du cuirassement. Thèse Univ. Nancy, 219 pp.Google Scholar
  16. George-Aniel B., J. L. Leroy, and B. Poty. 1991. Volca-nogenic uranium mineralizations in the Sierra Pena Bianca District, Chihuahua, Mexico: Three genetic models. Econ. Geol. 86: 233–248.CrossRefGoogle Scholar
  17. Grey, I. E., C. Li, and J. A. Watts. 1983. Hydrothermal synthesis of goethite-rutile intergrowth structures and their relationship to rutile. Amer. Mineral. 68: 991–998.Google Scholar
  18. Hunt, G. R., J. W. Salisbury, C. J. Lenhoff. 1971. Visible and near-infrared spectra of minerals and rocks. III. Oxides and hydroxides. Modern Geol. 2: 195–205.Google Scholar
  19. Hutton, T. J. 1977. Titanium and zirconium minerals. In Minerals in Soil Environment. J. B. Dixon and S. B. Weed, eds. Madison: Soil Sci. Soc. Am., 673–688.Google Scholar
  20. Ildefonse P., P. Agrinier, and J. P. Muller. 1990. Crystal chemistry and isotope geochemistry of alteration associated with the uranium Nopal I deposit, Chihuahua, Mexico. Chem. Geol. 84: 371–372.CrossRefGoogle Scholar
  21. Jackson, N. J., J. Willis-Richard, D. A. C. Manning, and M. S. Sams. 1989. Evolution of the Cornubian ore field, Southwest England: Part II. Mineral deposits and ore-forming processes. Econ. Geol 84: 1101–1133.CrossRefGoogle Scholar
  22. Jepson, W. B. 1988. Structural iron in kaolinites and in associated ancillary minerals. In Iron in Soil and Clay Minerals. J. W. Stucki, B. A. Goodman and U. Schwertmann, eds. Dordrecht, Reidel: 467–536.CrossRefGoogle Scholar
  23. Jepson, W. B., and J. B. Rowse. 1975. The composition of kaolinite. An electron microscope microprobe study. Clays & Clay Miner. 23: 310–317.CrossRefGoogle Scholar
  24. Karickhoff, S. W., and G. W. Bailey. 1973. Optical absorption spectra of clay minerals. Clays & Clay Miner. 21: 59–70.CrossRefGoogle Scholar
  25. Malengreau N., J-P. Muller, and G. Calas. 1994. Fe-spe-ciation in kaolins: a diffuse reflectance study. Clays & Clay Miner. 42: 137–147.CrossRefGoogle Scholar
  26. Maynard, R. N., N. Millman, and J. Iannicelli. 1969. A method for removing titanium dioxide impurities from kaolin. Clays & Clay Miner. 17: 59–62.CrossRefGoogle Scholar
  27. Mehra, O. P., and M. L. Jackson. 1960. Iron oxide removal from soil and clays by a dithionite-citrate system buffered with sodium carbonate. Proc. 7th Natl. Conf. Clays & Clay Miner., 317–327.Google Scholar
  28. Muller, J-P, P. Ildefonse, and G. Calas. 1990. Paramagnetic defect centers in hydrothermal kaolinite from an altered tuff in the Nopal uranium deposit, Chihuahua, Mexico. Clays & Clay Miner. 38: 600–608.CrossRefGoogle Scholar
  29. Muller, J-P., and G. Calas. 1993. Genetic significance of paramagnetic centers in kaolinites. In Kaolin Genesis and Utilization. H. H. Murray, W. M. Bundy and C. C. Harvey, eds. Boulder, Colorado: Clay Minerals Society of America, 261–289.Google Scholar
  30. Murray, H. H. 1988. Kaolin minerals: their genesis and occurences. In Hydrous Phyllosilicates, Reviews in Mineralogy 19. S. W. Bailey, ed. Washington, D.C.: Mineralogical Society of America, 67–90.CrossRefGoogle Scholar
  31. Nahon, D. 1986. Evolution of iron crusts in tropical landscapes. In Rates of chemical Weathering of Rocks and Minerals. S. M. Colman and D. P. Dethier, eds. London: Academic Press, 168–187.Google Scholar
  32. Rengasamy, P. 1976. Substitution of iron and titanium in kaolinites. Clays & Clay Miner. 24: 265–266.CrossRefGoogle Scholar
  33. Sayin M., and M. L. Jackson. 1975. Anatase and rutile determination in kaolinite deposit. Clays & Clay Miner. 23: 437–4143.CrossRefGoogle Scholar
  34. Schwertmann, U. 1966. Inhibitory effect of soil organic matter on the crystallization of amorphous ferric hydroxide. Nature 212: 645–646.CrossRefGoogle Scholar
  35. Strens, R. G. J., and B. J. Wood. 1979. Diffuse reflectance spectra and optical properties of some iron and titanium oxides and oxyhydroxides. Mineral. Mag. 43: 347–354.CrossRefGoogle Scholar
  36. Temple, A. K. 1966. Alteration of ilmenite. Econ. Geol. 61: 695–714.CrossRefGoogle Scholar
  37. Tossell, J. A., D. J. Vaughan, and K. H. Johnson. 1974. The electronic structure of rutile, wustite and hematite from molecular orbital calculations. Amer. Mineral. 59: 319–334.Google Scholar
  38. Van Olphen H., and J. J. Fripiat. 1978. Data Handbook For Clay Materials and Other Non-Metallic Minerals. Oxford: Pergamon Press, 344 pp.Google Scholar
  39. Walker, J. L., G. D. Sherman, and T. Katsura. 1969. The iron and titanium minerals in the titaniferous ferruginous latosols of Hawaii. Pacif. Sci. 23: 291–304.Google Scholar
  40. Weaver, C. E. 1976. The nature of TiO2 in kaolinite. Clays & Clay Miner. 24: 215–218.CrossRefGoogle Scholar
  41. Wendlandt, W. W. M., and H. G. Hecht. 1966. Reflectance Spectroscopy. New York: Interscience Publishers, Wiley and Sons, 298 pp.Google Scholar
  42. Waychunas, G. A. 1991. Crystal chemistry of oxides and oxyhydroxides. In Oxides minerals: petrologic and magnetic significance, Reviews in Mineralogy 25. D. H. Lindsley, ed. Washington, D.C.: Mineralogical Society of America, 11–68.CrossRefGoogle Scholar
  43. Wort, M. J., and M. P. Jones. 1980. X-ray diffraction and magnetic studies of altered ilmenite and pseudorutile. Mineral. Mag. 43: 659–663.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1995

Authors and Affiliations

  • Nathalie Malengreau
    • 1
    • 2
  • Jean-Pierre Muller
    • 1
  • Georges Calas
    • 1
  1. 1.Laboratoire de Minéralogie-CristallographieURA CNRS 09 Universités de Paris 6 et 7Paris Cedex 05France
  2. 2.Département T.O.A.O.R.S.T.O.M.Paris Cedex 10France

Personalised recommendations