Skip to main content
Log in

Synthesis and Catalytic Properties of Silicate-Intercalated Layered Double Hydroxides Formed by Intragallery Hydrolysis of Tetraethylorthosilicate

  • Published:
Clays and Clay Minerals

Abstract

Layered double hydroxides (LDH’s) interlayered with silicate anions were prepared by reaction of tetraethylorthosilicate (TEOS) with synthetic meixnerite-like precursors of the type [Mg1−xAlx(OH)2][OH]x·zH2O, where (1 − x)/x ≈ 2, 3, or 4. TEOS hydrolysis at ambient temperature occurred readily in the galleries of the hydroxide precursors with (1 − x)/x ≈ 3 or 4, but a temperature of ∼100°C was required to achieve silicate intercalation for the LDH composition with (1 − x)/x ≈ 2. On the basis of the observed gallery heights (∼7.0−∼7.2 Å) and 29Si MAS NMR spectra that indicated the presence of Q2, Q3, and Q4SiO4 sites, the intercalated silicate anions, which are formed by condensation reactions of silanol groups and partial neutralization of SiOH groups with gallery hydroxide ions, are assigned short chain structures. Also, some O3SiOH groups become grafted to the LDH layers by condensation with MOH groups on the gallery surfaces. The LDH-silicates exhibited comparable non-microporous N2 BET surface areas in the range 59–85 m2/g, but they differed substantially in acid/base reactivities, as judged by their relative activities for the catalytic dehydration/disproportionation of 2-methyl-3-butyn-2-ol (MBOH). Under reaction conditions where the LDH structure is retained (150°C), all the silicate intercalates showed mainly basic reactivities for the disproportionation of MBOH to acetone and acetylene. However, all the LDH silicates were less reactive than the corresponding LDH carbonates. Conversion of the LDH silicates to metal oxides at 450°C introduced acidic activity for MBOH dehydration, whereas the metal oxides formed by LDH carbonate decomposition were exclusivity basic under analogous conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brunauer, S., P. H. Emmett, and E. Teller. 1938. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60: 309–319.

    Article  Google Scholar 

  • Carrado, K. A., J. E. Forman, R. E. Botto, and R. E. Winans. 1993. Incorporation of phthalocyanines by cationic and anionic clays via ion exchange and direct synthesis. Chem. Mater. 5: 472–478.

    Article  Google Scholar 

  • Cavani, F., F. Trifirò, and A. Vaccari. 1991. Hydrotalcitetype anionic clays: Preparation, properties and applications. In Catalysis Today. Amsterdam: Elsevier Vol. 11, 173–301.

    Article  Google Scholar 

  • Chibwe, K., and W. Jones. 1989. Synthesis of polyoxometalate-pillared layered double hydroxides via calcined precursors. Chem. Mater. 1: 489–490.

    Article  Google Scholar 

  • Chibwe, M., and T. J. Pinnavaia. 1993. Stabilization of a cobalt(II) phthalocyanine oxidation catalyst by intercalation in a layered double hydroxide host. J. Chem. Soc., Chem. Commun. 278–280.

    Google Scholar 

  • Conner, A. Z., P. J. Elving, J. Benischeck, P. E. Tobias, and S. Steingiser. 1950. Vapor-liquid equilibria in binary systems: Water-2-methyl-3-butyn-2-ol and water-3-hydroxy- 3-methyl-2-butanone. Ind. Eng. Chem. 42: 106–110.

    Article  Google Scholar 

  • De Boer, J. H., B. C. Lippens, B. G. Linsen, J. C. P. Broekhoff, A. Van den Heuvel, and Th. J. Osinga. 1966. The t-curve of multimolecular N2-adsorption J. Coll. Interface Sci. 21: 405–414.

    Article  Google Scholar 

  • Dimotakis, E. D., and T. J. Pinnavaia. 1990. New route to layered double hydroxides intercalated by organic anions: precursors to polyoxometalate-pillared derivatives. Inorg. Chem. 29: 2393–2394.

    Article  Google Scholar 

  • Drezdzon, M. A. 1988. Synthesis of Isopolyoxometalatepillared hydrotalcite via organic-anion-pillared precursors. Inorg. Chem. 27: 4628–4632.

    Article  Google Scholar 

  • Fyfe, C. A., G. Fu, and H. Grondey. 1994. Pillaring of layered double hydroxides with cage-like polysilicates: a possible new class of base catalysts or catalyst precursors. Abstracts of Papers, Spring Meeting of the Materials Research Society, April 4–8, San Francisco.

    Google Scholar 

  • Groenen, E. J. J., C. A. Emeis, J. P. van der Berg, and P. C. de Jong-Versloot. 1987. Infrared spectroscopy of doublefour-ring silicates. Zeolite 7 474–477.

    Article  Google Scholar 

  • Harris, M. T., R. R. Brunson, and C. H. Byers. 1990. The base-catalyzed hydrolysis and condensation reactions of dilute and concentrated TEOS solutions. J. Non-Cryst. Solids 121: 397–403.

    Article  Google Scholar 

  • Heidemann, D., A.-R. Grimmer, C. Hübert, P. Starke, and M. Mägi. 1985. Hochauflösende 29Si-festkörper-NMR-untersuchungen an polykristallinen phyllokieselsäuren (H2Si2O5)x bei tiefem und hohem magnetfeld. Z. Anorg. Allg. Chem. 528: 22–36.

    Article  Google Scholar 

  • Hou, W., J. Ma, Q. Yan, and X. Fu. 1993. Highly thermostable, porous, layered titanoniobate pillared by silica. J. Chem. Soc., Chem. Commun. 1144–1145.

    Google Scholar 

  • Hou, W., B. Peng, Q. Yan, X. Fu, and G. Shi. 1993. The first silica-pillared layered niobate. J. Chem. Soc., Chem. Commun. 253–254.

    Google Scholar 

  • Kwon, T., G. A. Tsigdinos, and T. J. Pinnavaia. 1988. Pillaring of layered double hydroxides (LDHs) by polyoxometalate anions. J. Am. Chem. Soc. 110: 3653–3654.

    Article  Google Scholar 

  • Lauron-Pemot, H., F. Luck, and J. M. Popa. 1991. Methylbutynol: A new and simple diagnostic tool for acidic and basic sites of solids. Appl. Catal. 78: 213–225.

    Article  Google Scholar 

  • Meyn, M., K. Beneke, and G. Lagaly. 1990. Anion-exchange reactions of layered double hydroxides. Inorg. Chem. 29: 5201–5207.

    Article  Google Scholar 

  • Narita, E., P. D. Kaviratna, and T. J. Pinnavaia. 1993. Direct synthesis of a polyoxometalate-pillared layered double hydroxide by coprecipitation. J. Chem. Soc., Chem. Commun. 60–62.

    Google Scholar 

  • Ohtsuka, K., M. Suda, M. Tsunoda, and M. Ono. 1990. Synthesis of metal hydroxide-layer silicate intercalation compounds (Metal = Mg(II), Ca(II), Mn(II), Fe(II), Co(II), Ni(H), Zn(II), and Cd(II)): Chem. Mater. 2: 511–517.

    Article  Google Scholar 

  • Sato, T., K. Kato, T. Endo, and M. Shimada. 1988. Synthesis of hydrotalcite-like compounds and their physicochemical properties. React. Solids 5: 219–228.

    Article  Google Scholar 

  • Schutz, A., and P. Biloen. 1987. Interlamellar chemistry of hydrotalcites. J. Solid State Chem. 68: 360–368.

    Article  Google Scholar 

  • Tatsumi, T., K. Yamamoto, H. Tajima, and H.-O. Tominaga. 1992. Shape selective epoxidation of alkenes catalyzed by polyoxometalate-intercalatedhydrotalcite. Chem. Lett. 815–818.

    Google Scholar 

  • Wang, J., Y. Tian, R.-C. Wang, and A. Clearfield. 1992. Pillaring of layered double hydroxides with polyoxometal- ates in aqueous solution without use of preswelling agents. Chem. Mater. 4: 1276–1282.

    Article  Google Scholar 

  • Yamanaka, S., and M. Hattori. 1991. Clays pillared with ceramic oxides. In Chemistry ofMicroporous Crystals. Amsterdam: Elsevier, 60: 89–96.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yun, S.K., Constantino, V.R.L. & Pinnavaia, T.J. Synthesis and Catalytic Properties of Silicate-Intercalated Layered Double Hydroxides Formed by Intragallery Hydrolysis of Tetraethylorthosilicate. Clays Clay Miner. 43, 503–510 (1995). https://doi.org/10.1346/CCMN.1995.0430415

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1995.0430415

Key Words

Navigation