Skip to main content
Log in

Preservation of Clay Minerals in the Precambrian (1.1 GA) Nonesuch Formation in the Vicinity of the White Pine Copper Mine, Michigan

  • Published:
Clays and Clay Minerals

Abstract

The Middle Proterozoic (1.1 Ga) Nonesuch Formation, host of the stratiform copper deposit at White Pine, Michigan, consists of 200 m of principally dark grey clastic sediments which contain detritus obtained dominantly from underlying mafic to intermediate volcanic rocks. Clay minerals from samples collected from the mine area and drill holes up to 100 km away have been studied using SEM, EMPA, TEM and AEM. Two morphologies of phyllosilicates, both including white mica and chlorite, occur in the ‘lower’ Nonesuch Formation: (1) detrital-shaped and (2) matrix. Detrital-shaped phyllosilicate grains are up to 450 microns long with long axes parallel to bedding. Matrix phyllosilicates occur as packets typically <200 Å thick and as pore-filling cement.

TEM images of detrital-shaped chlorite generally display 14-Å periodicity, although 24-Å corrensite- like units occur locally. Most detrital-shaped chlorite from the mine area samples have a relatively restricted range of Fe/(Mg+Fe) ratios from 0.52 to 0.58, but the Fe/(Fe+Mg) ratios of detrital-shaped chlorite outside the mine area range from 0.27 to 0.64. Ti02 crystals occur within and surrounding the detrital-shaped chlorite. Matrix chlorite has Fe/(Fe+Mg) ratios of 0.47 to 0.63, indicating that it is relatively homogeneous and enriched in Fe compared to detrital-shaped chlorite.

Detrital-shaped white mica occurs as a 2Mi polytype and generally has a phengitic composition. Matrix illite-rich I/S occurs as a lMd polytype, is K and A1 deficient relative to end-member muscovite and contains significant Fe and Mg.

The data are consistent with homogenization of detrital-shaped chlorite in the White Pine mine area by hydrothermal fluids during copper mineralization. The Ti02 crystals and corrensite-like units in detrital- shaped chlorite imply that it is at least in part derived from alteration of biotite. The presence of immature lMd illite-rich I/S and a one layer chlorite polytype with stacking disorder suggests that the matrix clays are in their original, post-smectite state of formation as consistent with an authigenic origin during early burial diagenesis; i.e., they have not undergone subsequent transformation even though sedimentation and ore deposition occurred prior to 1 Ga.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguirre, L., and M. P. Atherton. 1987. Low-grade metamorphism and geotectonic setting of Macuchi Formation, western Cordillera of Ecuador. J. Metam. Geol. 5:473–494.

    Article  Google Scholar 

  • Ahn, J. H., and D. R. Peacor. 1985. Transmission electron microscopic study of diagenetic chlorite in Gulf Coast argillaceous sediments. Clays & Clay Miner. 33: 228–236.

    Article  Google Scholar 

  • Ahn, J. H., and D. R. Peacor. 1986. Transmission and analytical electron microscopy of the smectite-to-illite transition. Clays & Clay Miner. 34: 165–179.

    Article  Google Scholar 

  • AlDahan, A. A., and S. Morad. 1986. Chemistry of detrital ai]biotites and their phyllosilicate intergrowths in sandstones. Clays & Clay Miner. 34: 539–548.

    Article  Google Scholar 

  • April, R. H., and D. M. Keller. 1992. Saponite and vermiculite in amygdules of the Granby basaltic tuff, Connecticut Valley. Clays & Clay Miner. 40: 22–31.

    Article  Google Scholar 

  • Arehart, G. B. 1992. Age and fluid chemistry of sedimenthosted disseminated gold deposits in the Great Basin, Nevada: Ph.D. thesis. University of Michigan, Ann Arbor, Michigan, 163 pp.

    Google Scholar 

  • Bailey, S. W., and B. E. Brown. 1962. Chlorite polytypism: I. Regular and semi-random one-layer structures. Amer. Mineral. 47: 819–850.

    Google Scholar 

  • Banos, J. O., M. Amouric, C. Fouquet, and A. Baronnet. 1983. Interlayering and Interlayer slip in biotite as seen by HRTEM. Amer. Mineral. 68: 754–758.

    Google Scholar 

  • Bayliss, S.W. 1975. Nomenclature of the trioctahedral chlorites. Can. Mineral. 13: 178–180.

    Google Scholar 

  • Boles, J. R., and D. S. Coombs. 1977. Zeolite facies alteration of sandstones in the Southland syncline, New Zealand. Amer. J. Sci. 277: 982–1012.

    Article  Google Scholar 

  • Boles, J. R., and S. G. Frank. 1979. Clay diagenesis in the Wilcox sandstones of southwest Texas: Implications of smectite diagenesis on sandstone cementation. J. Sed. Petrol. 49: 55–70.

    Google Scholar 

  • Brown, A. C. 1971. Zoning in the White Pine copper district, Ontonagon County, Michigan. Econ. Geol. 66: 543–573.

    Article  Google Scholar 

  • Cannon, W. F., and S. W. Nicholson. 1992. Revisions of stratigraphic nomenclature within the Keweenawan Supergroup of Northern Michigan. U.S. Geol. Surv. Bull. 1970. A1–A8.

    Google Scholar 

  • Cannon, W. F. 1989. The north American Midcontinent Rift beneath Lake Superior from GLIMPCE seismic reflection profiling. Tectonics 8: 305–332.

    Article  Google Scholar 

  • Chase, C. G., and T. H. Gilmer. 1973. Precambrian plate tectonics: The midcontinent gravity high. Earth Planet Sci. Letters 21: 70–78.

    Article  Google Scholar 

  • Cliff, G., and G. W. Lorimer. 1975. The quantitative analysis of thin specimens. J. Microscopy 103: 203–207.

    Article  Google Scholar 

  • Curtis, C. D., C. R. Hughes, J. A. Whiteman, and C. K. Whittle. 1985. Composition variation within some sedimentary chlorite and some comments on their origin. Mineral. Mag. 49: 375–386.

    Article  Google Scholar 

  • Daniels, P. A. 1982. Upper Precambrian sedimentary rocks, Oronto Group, Michigan-Wisconsin. In Geology and tectonics of the Lake Superior Basin. Geol. Soc. Amer. Mem. 156: 107–133.

    Article  Google Scholar 

  • Deer, W. A., R. A. Howie, and J. Zussman. 1966. An Introduction to the Rock Forming Minerals. London: Longman Group Ltd., 528 pp.

    Google Scholar 

  • Dimberline, A. J. 1986. Electron microscope and electron microprobe analysis of chlorite-mica stacks in the Wenlock turbidites, mid Wales, U.K. Geol. Mag. 123: 299–306.

    Article  Google Scholar 

  • Eggleton, R. A., and J. F. Banfield. 1985. The alteration of granitic biotite to chlorite. Amer. Mineral. 70: 902–910.

    Google Scholar 

  • Elmore, R. D., G. J. Milavec, S. W. Imbus, and M. H. Engel. 1989. The Precambrian Nonesuch Formation of the North American Mid-continent Rift, sedimentology and organic geochemical aspects of lacustrine deposition. Precambrian Research 43: 191–213.

    Article  Google Scholar 

  • Essene, E. J., and D. R. Peacor. 1995. Clay mineral thermometry—A critical perspective. Clays & Clay Miner, (in press).

    Google Scholar 

  • Evarts, R. C., and P. Schiffman. 1983. Submarine hydrothermal metamorphism of the Del Puerto ophiolite, California. Amer. J. Sci. 283: 289–340.

    Article  Google Scholar 

  • Ferry, J. M. 1978. Fluid interaction between granite and sediment during metamorphism, south-central Maine. Amer. J. Sci. 278: 1025–1056.

    Article  Google Scholar 

  • Ferry, J. M. 1979. Reaction mechanisms, physical conditions, and mass transfer during hydrothermal alteration of mica and feldspar in granitic rocks from south-central Maine, USA. Contrib. Mineral. Petrol. 68: 125–139.

    Article  Google Scholar 

  • Grubb, S. M. B., D. R. Peacor, and W.-T. Jiang. 1991. Transmission electron microscopy observations of illite polytypism. Clays & Clay Miner. 39: 540–550.

    Article  Google Scholar 

  • Hayes, J. B. 1970. Polytypism of chlorite in sedimentary rocks. Clay & Clay Miner. 18: 285–306.

    Article  Google Scholar 

  • Hillier, S., and B. Velde. 1991. Octahedral occupancy and the chemical composition of diagenetic (low-temperature) chlorites. Clay Miner. 26: 149–168.

    Article  Google Scholar 

  • Hite, D. M. 1968. Sedimentology of the upper Keweenawan sequence of northern Wisconsin and adjacent Michigan: Ph. D. thesis. University of Wisconsin, Madison, Wisconsin, 217 pp.

    Google Scholar 

  • Hover, V. C., D. R. Peacor, and L. M. Walter. 1995. STEM evidence for preservation of diagenetic fabrics in Devonian Shales: Implications for fluid/rock interaction in cratonic basins. J. Sedim. Res. (in press).

    Google Scholar 

  • Hower, J., E. V. Eslinger, M. E. Hower, and E. A. Perry. 1976. Mechanism ofburial metamorphism of argillaceous sediments: 1. Mineralogical and chemical evidence. Bull. Geol. Sci. Amer. 87: 725–737.

    Article  Google Scholar 

  • Ilton, E. S., and D. R. Veblen. 1988. Copper inclusions in sheet silicate from porphyry Cu deposits. Nature 334: 516–518.

    Article  Google Scholar 

  • Ilton, E. S., D. Earley III. D. Morazas, and D. R. Veblen. 1992. Reaction of some trioctahedral micas with copper sulfate solutions at 25°C and 1 atmosphere: An electron microscope and transmission electron microscopy investigation. Econ. Geol. 87: 1813–1829.

    Article  Google Scholar 

  • Jiang, W.-T. 1993. Diagenesis and very low-grade metamorphism of pelitic rocks from the Gaspé Peninsula, Québec: Ph. D. thesis. University of Michigan, Ann Arbor, Michigan, 269 pp.

    Google Scholar 

  • Jiang, W.-T., F. Nieto, and D. R. Peacor. 1992. Composition of diagenetic illite as defined by analytical electron microscope analyses. Implications for smectite-illite-muscovite transition, (abstr.). 29th IGC Meeting, Kyoto, Japan, 100 pp.

    Google Scholar 

  • Kim, J.-W., D. R. Peacor, D. Tessier, and F. Elsass. 1995. A technique for maintaining texture and permanent expansion of smectite interlayers for TEM observations. Clays & Clay Miner, (in press).

    Google Scholar 

  • Kisch, H. J. 1983. Mineralogy and petrology of burial diagenesis (burial metamorphism) and incipient metamorphism in clastic rocks. In Diagenesis in Sediments and Sedimentary Rocks. G. Larsen and G. V. Chilingar, eds. New York: Elsevier, 289–493.

    Google Scholar 

  • Laird, J. 1988. Chlorites: Metamorphic petrology. In Hydrous Phyllosilicates. S. W. Bailey, ed. Mineralogical Society of America, Reviews in Mineralogy, 19: 405–453.

    Article  Google Scholar 

  • Lee, J. H., D. R. Peacor, D. D. Lewis, and R. P. Wintsch. 1984. Chlorite-illite/muscovite interlayered and interstratified crystals: A TEM/STEM study. Contrib. Mineral. Petrol. 88: 372–385.

    Article  Google Scholar 

  • Lee, J. H., J. H. Ahn, and D. R. Peacor. 1985. Textures in layer silicates: Progressive changes through diagenesis and low temperature metamorphism. J. Sed. Petrol. 55: 532–540.

    Google Scholar 

  • Lee, J. H., D. R. Peacor, D. D. Lewis, and R. P. Wintsch. 1986. Evidence for syntectonic crystallization for the mudstone to slate transition at Lehigh Gap, Pennsylvania, U.S. A. J. Struct. Geol. 8: 767–780.

    Article  Google Scholar 

  • Livi, K. J. T., D. R. Veblen, and J. M. Ferry. 1988. Electron microscope study of anchizone and epizone metamorphosed shales from the central Swiss Alps. Geol. Soc. Amer. Abstracts with Programs 20: A244.

    Google Scholar 

  • Li, G., D. R. Peacor, R. J. Merriman, B. Roberts, and B. A. van der Pluijm. 1994. TEM and AEM constraints on the origin and significance of chlorite-mica stacks in slates: An example from central Wales, U.K. J. Struct. Geol. 16:1139–1157.

    Article  Google Scholar 

  • Mauk, J. L. 1993. Geological and geochemical investigations of the White Pine sediment-hosted stratiform copper deposit, Ontonagon County, Michigan: Ph. D. thesis. University of Michigan, Ann Arbor, Michigan, 194 pp.

    Google Scholar 

  • Mauk, J. L., and G. B. Hieshima. 1992. Organic matter and copper mineralization at White Pine, Michigan. Chem. Geol. 99: 189–211.

    Article  Google Scholar 

  • Mauk, J. L., W. C. Kelly, and B. A. van der Pluijm. 1992. Relations between deformation and sediment-hosted copper mineralization: Evidence from the White Pine portion of the Midcontinent rift system. Geology 20: 427–430.

    Article  Google Scholar 

  • Meinschein, W. G., E. S. Barghoom, and J. W. Schopf. 1964. Biological remnants in a Precambrian sediment. Science 145: 262–263.

    Article  Google Scholar 

  • Merriman, R. J., B. Roberts, and D. R. Peacor. 1990. A Transmission electron microscope study of white mica crystallite size distribution in the mudstone to slate transitional sequence, North Wales, UK. Contrib. Mineral. Petrol. 106: 27–40.

    Article  Google Scholar 

  • Morad, S. 1986. Mica-chlorite intergrowths in very lowgrade metamorphic sedimentary rocks from Norway. Jeues Jahrb. Mineral. Abh. 154: 271–287.

    Google Scholar 

  • Morad, S., and A. A. AlDahan. 1986. Diagenetic alteration of detrital biotite in Proterozoic sedimentary rocks from Sweden. Sediment. Geol. 47: 95–107.

    Article  Google Scholar 

  • Nishioka, G. K. 1983. Origin of late veins in the White Pine copper deposits, northern Michigan: M.S. thesis. University of Michigan, Ann Arbor, Michigan, 35 pp.

    Google Scholar 

  • Ohr, M. 1993. Geochronology of diagenesis and low-grade metamorphism in pelites: Ph.D. thesis. University of Michigan, Ann Arbor, Michigan, 147 pp.

    Google Scholar 

  • Peacor, D. R. 1992. Diagenesis and low-grade metamorphism of shales and slates. In Minerals and Reactions at the Atomic Scale: Transmission Electron Microscopy. P. R. Buseck, ed. Mineralogical Society of America, Reviews in Mineralogy 27: 335–380.

    Article  Google Scholar 

  • Perry, E., and J. Hower. 1970. Burial diagenesis in Gulf Coast pelitic sediments. Clays & Clay Miner. 18: 165–177.

    Article  Google Scholar 

  • Price, K. L., and S. D. McDowell. 1993. Illite/smectite geothermometry of the Proterozoic Oronto Group, Midcontinent rift system. Clays & Clay Miner. 41: 134–147.

    Article  Google Scholar 

  • Ramamohan Rao, T. 1977. Distribution of elements between coexisting phengite and chlorite from the greenschist facies of the Tennant Creek area, central Australia. Lithos 10: 103–112.

    Article  Google Scholar 

  • Shau, Y.-H., D. R. Peacor, and J. E. Essene. 1990. Corrensite and mixed-layer chlorite/corrensite in metabasalt from northern Taiwan: TEM/AEM, EMPA, XRD, and optical studies. Contrib. Mineral. Petrol. 105: 123–142.

    Article  Google Scholar 

  • Sliney, R. E. 1988. Comparative mineralogy and geochemistry of a stratigraphic unit within the upper shale member of the Nonesuch Formation, White Pine, Michigan. Unpub. M.S. thesis. University of Michigan, Ann Arbor, 60 pp.

    Google Scholar 

  • Srodon, J., D. J. Morgan, E. V. Eslinger, D. D. Eberl, and M. R. Karlinger. 1986. Chemistry of illite/smectite and endmember illite. Clays & Clay Miner. 34: 368–378.

    Article  Google Scholar 

  • Thwaites, F. T. 1912. Sandstones of the Wisconsin coast of Lake Superior. Wisconsin Geological and Natural History Survey Bulletin 25: 117 pp.

  • Veblen, D. R., and J. M. Ferry. 1983. A TEM study of the biotite-chlorite reaction and comparison with petrographical observation. Amer. Mineral. 68: 1160–1168.

    Google Scholar 

  • Velde, B. 1977. Clays and Clay Minerals in Natural and Synthetic Systems. Amsterdam: Elsevier, 218 pp.

    Google Scholar 

  • Velde, B., J. F. Raoult, and M. Leikine. 1974. Metamorphosed berthierine pellets in Mid-Cretaceous rocks from northeastern Algeria. J. Sed. Petrol. 44: 1275–1280.

    Google Scholar 

  • Weaver, C. E. R. 1984. Shale-slate metamorphism in southern Appalachian. Development in Petrology. Amsterdam: Elsevier, 239 pp.

    Google Scholar 

  • White, W. S. 1966. Tectonics of the Keweenawan Basin, western Lake Superior region. U.S. Geol. Survey Prof. Paper 524-E: El–23.

    Google Scholar 

  • White, W. S. 1971. A paleohydrologic model for mineralization of the White Pine copper deposit, northern Michigan. Econ. Geol. 66: 1–13.

    Article  Google Scholar 

  • White, W. S., and J. C. Wright. 1966. Sulfide mineral zoning in the basal Nonesuch Shale, northern Michigan. Econ. Geol. 61: 1171–1190.

    Article  Google Scholar 

  • White, S. H., J. M. Huggett, and H. F. Shaw. 1985. Electronoptical studies of phyllosilicate intergrowths in sedimentary and metamorphic rocks. Mineral Mag. 49: 413–423.

    Article  Google Scholar 

  • Wiese, Jr., R. G. 1973. Mineralogy and geochemistry of the Parting Shale, White Pine, Michigan. Econ. Geol. 68: 317–331.

    Article  Google Scholar 

  • Yau, Y.-C., D. R. Peacor, and S. D. McDowell. 1987. Smectite to illite reaction in Salton Sea shales: A transmission and analytical electron microscopy study. J. Sed. Petrol. 57: 335–342.

    Google Scholar 

  • Yau, Y.-C., D. R. Peacor, E. B. Richard, E. J. Essene, and S. D. McDowell. 1988. Microstructures, formation mechanisms, and depth-zoning of phyllosilicates in geothermally altered shales, Salton Sea, California. Clays & Clay Miner. 36: 1–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G., Mauk, J.L. & Peacor, D.R. Preservation of Clay Minerals in the Precambrian (1.1 GA) Nonesuch Formation in the Vicinity of the White Pine Copper Mine, Michigan. Clays Clay Miner. 43, 361–376 (1995). https://doi.org/10.1346/CCMN.1995.0430311

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1995.0430311

Key words

Navigation