Skip to main content
Log in

Monte Carlo Simulation of Interlayer Molecular Structure in Swelling Clay Minerals. 2. Monolayer Hydrates

  • Published:
Clays and Clay Minerals

Abstract

Monte Carlo (MC) simulations of interlayer molecular structure in monolayer hydrates of Nasaturated Wyoming-type montmorillonites and vermiculite were performed. Detailed comparison of the stimulation results with experimental diffraction and thermodynamic data for these clay-water systems indicated good semiquantitative to quantitative agreement. The MC simulations revealed that, in the monolayer hydrate, interlayer water molecules tend to increase their occupation of the midplane as layer charge increases. As the percentage of tetrahedral layer charge increases, water molecules are induced to interact with the siloxane surface O atoms through hydrogen bonding and Na+ counter-ions are induced to form inner-sphere surface complexes. These results suggest the need for careful diffraction experiments on a series of monolayer hydrates of montmorillonite whose layer charge and tetrahedral isomorphic substitution charge vary systematically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamson, A. W. 1990. Physical Chemistry of Surfaces. New York: Wiley, 591–681.

    Google Scholar 

  • Allen, M. P., and D. J. Tildesley. 1987. Computer Simulation of Liquids. Oxford: Clarendon Press, 110–139.

    Google Scholar 

  • Bailey, S. W. 1980. Structures of layer silicates. In Crystal Structures of Clay Minerals and their X-ray Identification. G. W. Brindley and G. Brown, eds. London: Mineralogical Society, 1–123.

    Google Scholar 

  • Beveridge, D. L., M. Mezei, P. K. Mehroortra, F. T. Marchese, G. Ravi-Shanker, T. Vasu, and S. Swaminathan. 1983. Monte Carlo computer simulation studies of the equilibrium properties and structure of liquid water. In Molecular-Based Study of Fluids. J. M. Haile and G. A. Mansoori, eds. Washington: American Chemical Society, 297–351.

    Chapter  Google Scholar 

  • Bleam, W. F. 1993. Atomic theories of phyilosilicates. Rev. Geophys. 31: 51–73.

    Article  Google Scholar 

  • Bopp, P. 1987. Molecular dynamics simulations of aqueous ionic solutions. In The Physics and Chemistry of Aqueous Ionic Solutions. M.-C. Bellissent-Funel and G. W. Neilson, eds. Boston: D. Reidel, 217–243.

    Chapter  Google Scholar 

  • Bounds, D. G. 1985. A molecular dynamics study of the structure of water around the ions Li+, Na+, K+, Ca2+, Ni2+, and Cl-. Mol. Phys. 54: 1334–1355.

    Google Scholar 

  • Bradley, W. F., E. J. Weiss, and R. A. Rowland. 1963. A glycol sodium vermiculite complex. Clays & Clay Miner. 10: 117–122.

    Article  Google Scholar 

  • Buckingham, A. D. 1987. The structure and properties of a water molecule. In Water and Aqueous Solutions. G. W. Neilson and J. E. Enderby, eds. Boston: Adam Hilger, 110.

    Google Scholar 

  • Chandrasekhar, J., and W. L. Jorgensen. 1982. The nature of dilute solutions of sodium ions in water, methanol, and tetrahydrofuran. J. Chem. Phys. 77: 5080–5089.

    Article  Google Scholar 

  • de la Calle, C., and H. Suquet. 1988. Vermiculite. Rev. Mineral. 19: 455–496.

    Google Scholar 

  • de la Calle, C., A. Plançon, C. H. Pons, J. Dubemat, H. Suquet, and H. Pezerat. 1984. Mode d’Empilement des Feuillets dans la Vermiculite Sodique Hydratée à Une Couche (Phase à 11.85 Å). Clay Miner. 19: 563–578.

    Article  Google Scholar 

  • Fu, M. H., Z. Z. Zhang, and P. F. Low. 1990. Changes in the properties of a montmorillonite-water system during the adsorption and desorption of water. Hysteresis. Clays & Clay Miner. 38: 485–492.

    Article  Google Scholar 

  • Güven, N. 1992. Molecular aspects of clay-water interactions. In Clay-Water Interface and Its Rheological Implications. N. Güven and R. M. Pollastro, eds. Boulder: The Clay Minerals Society, 2–79.

    Google Scholar 

  • Hawkins, R. K., and P. A. Egelstaff. 1980. Interfacial water structure in montmorillonite from neutron diffraction experiments. Clays & Clay Miner. 28: 9–28.

    Article  Google Scholar 

  • Impey, R. W., P. A. Madden, and I. R. McDonald. 1983. Hydration and mobility of ions in solution. J. Phys. Chem. 87: 5071–5083.

    Article  Google Scholar 

  • Johnston, C. T., G. Sposito, and C. Erickson. 1992. Vibrational probe studies of water interactions with montmorillonite. Clays & Clay Miner. 40: 722–730.

    Article  Google Scholar 

  • Keren, R., and I. Shainberg. 1975. Water vapor isotherms and heat of immersion of Na/Ca-montmorillonite systems—I. Homoionic clay. Clays & Clay Miner. 23: 193–200.

    Article  Google Scholar 

  • Keren, R., and I. Shainberg. 1980. Water vapor isotherms and heat of immersion of Na/Ca-montmorillonite systems—III. Thermodynamics. Clay & Clay Miner. 28: 204–210.

    Article  Google Scholar 

  • Le Renard, J., and J. Mamy. 1971. Etude de la structure des phases hydratées des phlogopites altérées par des projections de Fourier monodimensionelles. Bull. Groupe Français Argiles 23: 119–127.

    Article  Google Scholar 

  • Low, P. F. 1985. The clay-water interface. Proc. Int. Clay Conf, Denver: Clay Minerals Society, 247–256.

    Google Scholar 

  • Low, P. F. 1987. Structural component of the swelling pressure of clays. Langmuir 3: 18–25.

    Article  Google Scholar 

  • Madden, P. A., and R. W. Impey. 1986. Dynamics of coordinated water: A comparison of experiment and simulation results. Ann. N.Y. Acad. Sci. 482: 91–114.

    Article  Google Scholar 

  • Matsouka, O., E. dementi, and M. Yoshimine. 1976. Cl study of the water dimer potential surface. J. Chem. Phys. 64: 1351–1361.

    Article  Google Scholar 

  • Mezei, M., and D. L. Beveridge. 1981. Monte Carlo studies of the structure of dilute aqueous solutions of Li, Na+, K+, F-, and Cl-. J. Chem. Phys. 74: 6902–6910.

    Article  Google Scholar 

  • Miller, S. E., and P. F. Low. 1990. Characterization of the electrical double layer of montmorillonite. Langmuir 6: 289–296.

    Article  Google Scholar 

  • Mooney, R. W., A. G. Keenan, and L. A. Wood. 1952a. Adsorption of water vapor by montmorillonite. I. Heat of desorption and application of BET theory. J. Am. Chem. Soc. 74: 1367–1371.

    Article  Google Scholar 

  • Mooney, R. W., A. G. Keenan, and L. A. Wood. 1952b. Adsorption of water vapor by montmorillonite. II. Effect of exchangeable ions and lattice swelling as measured by X-ray diffraction. J. Am. Chem. Soc. 74: 1371–1374.

    Article  Google Scholar 

  • Newman, A. C. D. 1987. The interaction of water with clay mineral surfaces: In Chemistry of Clays and Clay Minerals. A. C. D. Newman, ed. New York: Wiley, 237–274.

    Google Scholar 

  • Newman, A. C. D., and G. Brown. 1987. The interaction of water with clay mineral surfaces. In Chemistry of Clays and Clay Minerals. A. C. D. Newman, ed. New York: Wiley, 1–128.

    Google Scholar 

  • Pezerat, H., and J. Méring. 1967. Recherches sur la position des cations échangeables et de l’eau dans les montmorillonites. C.R. Acad. Sci. Paris 265 (Série D): 529–532.

    Google Scholar 

  • Schulz, L. G. 1969. Lithium and potassium adsorption, dehydroxycation temperature, and structural water content of aluminous smectites. Clays & Clay Miner. 17: 115–149.

    Article  Google Scholar 

  • Skipper, N. T. 1992. MONTE: User’s Manual: Technical Report, Department of Chemistry, University of Cambridge, UK.

    Google Scholar 

  • Skipper, N. T. and G. W. Neilson. 1989. X-Ray and neutron diffraction studies on concentrated aqueous solutions of sodium nitrate and silver nitrate. J. Phys. Condens. Matter 1: 4141–4154.

    Article  Google Scholar 

  • Skipper, N. T., K. Refson, and J. D. C. McConnell. 1989. Computer calculation of water-clay interactions using atomic pair potentials. Clay Miner. 24: 411–425.

    Article  Google Scholar 

  • Skipper, N. T., A. K. Soper, and J. D. C. McConnell. 1991a. The structure of interlayer water in vermiculite. J. Chem. Phys. 94: 5751–5760.

    Article  Google Scholar 

  • Skipper, N. T., K. Refson, and J. D. C. McConnell. 1991b. Computer simulation of interlayer water in 2:1 clays. J. Chem. Phys. 94: 7434–7445.

    Article  Google Scholar 

  • Skipper, N. T., K. Refson, and J. D. C. McConnell. 1993. Monte Carlo simulations of Mg- and Na-smectites. In Geochemistry of Clay-Pore Fluid Interactions. D. C. Manning, P. L. Hall, and C. R. Hughes, eds. London: Chapman and Hall, 40–59.

    Google Scholar 

  • Skipper, N.T., F.-R.C. Chang, and G. Sposito. 1995. Monte Carlo simulation of interlayer molecular structure in swelling clay minerals. 1. Methodology. Clays & Clay Miner, (in review).

    Google Scholar 

  • Slabaugh, W. H. 1959. Adsorption characteristics of homoionic bentonites. J. Phys. Chem. 63: 436–438.

    Article  Google Scholar 

  • Sposito, G. 1984. The Surface Chemistry of Soils. New York: Oxford University Press, 1–77.

    Google Scholar 

  • Sposito, G. 1992. The diffuse-ion swarm near smectite particles suspended in 1:1 electrolyte solutions: Modified Gouy-Chapman theory and quasicrystal formation. In Clay-Water Interface and its Rheological Implications. N. Güven and R.M. Pollastro, eds. Boulder: The Clay Minerals Society, 128–155.

    Google Scholar 

  • Sposito, G., and R. Prost. 1982. Structure of water adsorbed on smectites. Chem. Rev. 82: 553–573.

    Article  Google Scholar 

  • Sposito, G., R. Prost, and J. P. Gaultier. 1983. Infrared spectroscopic study of adsorbed water on reduced-charge Na/Li montmorillonites. Clays & Clay Miner. 31: 9–16.

    Article  Google Scholar 

  • van Olphen, H. 1965. Thermodynamics of interlayer adsorption of water in clays. I. Na vermiculite. J. Colloid & Interface Sci. 20: 822–837.

    Article  Google Scholar 

  • Zettlemoyer, A. C., G. J. Young, and J. J. Chessick. 1955. Studies of the surface chemistry of silicate minerals. III. Heats of immersion of bentonites in water. J. Phys. Chem. 59: 962–966.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skipper, N.T., Sposito, G. & Chang, FR.C. Monte Carlo Simulation of Interlayer Molecular Structure in Swelling Clay Minerals. 2. Monolayer Hydrates. Clays Clay Miner. 43, 294–303 (1995). https://doi.org/10.1346/CCMN.1995.0430304

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1995.0430304

Key words

Navigation