Skip to main content
Log in

Monte Carlo Simulation of Interlayer Molecular Structure in Swelling Clay Minerals. 1. Methodology

  • Published:
Clays and Clay Minerals

Abstract

Monte Carlo (MC) simulations of molecular structure in the interlayers of 2:1 Na-saturated clay minerals were performed to address several important simulation methodological issues. Investigation was focused on monolayer hydrates of the clay minerals because these systems provide a severe test of the quality and sensitivity of MC interlayer simulations. Comparisons were made between two leading models of the water-water interaction in condensed phases, and the sensitivity of the simulations to the size or shape of the periodically-repeated simulation cell was determined. The results indicated that model potential functions permitting significant deviations from the molecular environment in bulk liquid water are superior to those calibrated to mimic the bulk water structure closely. Increasing the simulation cell size or altering its shape from a rectangular 21.12 Å × 18.28 Å × 6.54 Å cell (about eight clay mineral unit cells) had no significant effect on the calculated interlayer properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, D. J. 1993. On the use of the Ewald summation in computer simulation. J. Chem. Phys. 78: 2585–2590.

    Article  Google Scholar 

  • Adams, D. J., and G. S. Dubey. 1987. Taming the Ewald sum in computer simulation of charged systems. J. Comput. Phys. 12: 156–176.

    Article  Google Scholar 

  • Allan, D. C., and M. P. Teter. 1987. Nonlocal pseudopotentials in molecular-dynamical density-functional theory. Application to SiO2. Phys. Rev. Lett. 59: 1136–1139.

    Article  Google Scholar 

  • Allen, M. P., and D. J. Tildesley. 1987. Computer Simulation of Liquids. Oxford: Clarendon Press, 110–139.

    Google Scholar 

  • Bleam, W. F. 1993. Atomic theories of phyllosilicates. Rev. Geophys. 31: 51–73.

    Article  Google Scholar 

  • Bounds, D. G. 1985. A molecular dynamics study of the structure of water around the ions Li+, Na+, K+, Ca2+, Ni2+, and Cl-. Mol. Phys. 54: 1335–1355.

    Article  Google Scholar 

  • Bounds, D. G., and P. J. Bounds. 1983. Potential surfaces derived from gradient calculations. New potentials for Li+/H2O, Na+/H2O, and K+/H2O. Mol. Phys. 50: 25–32.

    Article  Google Scholar 

  • Brindley, G. W., and G. Brown. 1980. Crystal Structures of Clay Minerals and their X-ray Identification. London: Mineralogical Society, 1–123.

    Google Scholar 

  • dementi, E. 1976. Determination of Liquid Water Structure. Berlin: Springer-Verlag, 1–88.

    Google Scholar 

  • Corrungiu, G., and E. dementi. 1992. Solvated water molecules and hydrogen-bridged networks in liquid water. J. Chem. Phys. 98: 2241–2249.

    Article  Google Scholar 

  • Delville, A. 1991. Modeling the clay-water interface. Langmuir 7: 547–555.

    Article  Google Scholar 

  • Delville, A. 1992. Structure of liquids at a solid interface: An application to the swelling of clay by water. Langmuir 8: 1796–1805.

    Article  Google Scholar 

  • Delville, A., and S. Sokolowski. 1993. Adsorption of vapor at a solid interface: A molecular model of clay wetting. J. Chem. Phys. 97: 6261–6271.

    Article  Google Scholar 

  • Finney, J. L., J. E. Quinn, and J. O. Baum. 1986. The water dimer potential surface. Water Sci. Rev. 1: 93–170.

    Google Scholar 

  • Giese, R. F. 1979. Hydroxyl orientations in 2:1 phyllosilicates. Clays & Clay Miner. 27; 213–223.

    Article  Google Scholar 

  • Hass, E. C., P. J. Mezey, and P. J. Plath. 1981. A nonempirical molecular orbital study on Lowenstein’s rule and zeolite composition. J. Mol. Struc. 76: 389–399.

    Article  Google Scholar 

  • Jorgensen, W. L., J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein. 1983. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 19: 926–935.

    Article  Google Scholar 

  • Karin, O. A. 1991. Simulation of an anion in water: Effect of ion polarizability. Chem. Phys. Lett. 184: 560–565.

    Article  Google Scholar 

  • Kistenmacher, H., H. Popkie, and E. dementi. 1973. Study of the structure of molecular complexes. II. Energy surfaces for a water molecule in the field of a sodium or potassium cation. J. Chem. Phys. 58: 1689–1699.

    Article  Google Scholar 

  • Lasaga, A. C. 1992. Ab initio methods in mineral surface reactions. Rev. Geophys. 30: 269–303.

    Article  Google Scholar 

  • Lee, C., D. Vanderbilt, K. Laasonen, R. Car, and M. Parrinello. 1992. Ab initio studies on high pressure phases of ice. Phys. Rev. Lett. 69: 462–465.

    Article  Google Scholar 

  • Lie, G. C., E. dementi, and M. Yoshimine. 1976. Study of the structure of molecular complexes. XIII. Monte Carlo Simulation of liquid water with a configuration interaction pair potential. J. Chem. Phys. 64, 2314–2323.

    Article  Google Scholar 

  • Matsouka, O., E. dementi, and M. Yoshimine. 1976. CI study of the water dimer potential surface. J. Chem. Phys. 64: 1351–1361.

    Article  Google Scholar 

  • Mooney, R. W., A. G. Keenan, and L. A. Wood. 1952. Adsorption of water vapor by montmorillonite. II. Effect of exchangeable ions and lattice swelling as measured by X-ray diffraction. J. Am. Chem. Soc. 74: 1371–1374.

    Article  Google Scholar 

  • Neilson, G. W., and J. E. Enderby. 1986. Water and Aqueous Solutions. Boston: Adam Hilger, 284 pp.

    Google Scholar 

  • Newman, A. C. D. 1987. Chemistry of Clays and Clay Minerals. New York: Wiley, 1–128.

    Google Scholar 

  • Newman, A. C. D. 1987. The interaction of water with clay mineral surfaces. In Chemistry of Clays and Clay Minerals. A. C. D. Newman, ed. New York: Wiley, 237–274.

    Google Scholar 

  • Sauer, J. 1989. Molecular models in ab initio studies of solids and surfaces. Chem. Rev. 89: 199–255.

    Article  Google Scholar 

  • Sauer, J., C. Morgeneyer, and K.-P. Schröder. 1984. Transferable analytical potential based on nonempirical quantum chemical calculations (QPEM) for water-silica interactions. J. Phys. Chem. 88: 6375–6383.

    Article  Google Scholar 

  • Skipper, N. T. 1992. MONTE User’s Manual. Technical Report, Department of Chemistry, University of Cambridge, UK.

    Google Scholar 

  • Skipper, N. T., K. Refson, and J. D. C. McConnell. 1989. Computer calculation of water-clay interactions using atomic pair potentials. Clay Miner. 24: 411–425.

    Article  Google Scholar 

  • Skipper, N. T., A. K. Soper, and J. D. C. McConnell. 1991a. The structure of interlayer water in Vermiculite. J. Chem. Phys. 94: 5751–5760.

    Article  Google Scholar 

  • Skipper, N. T., K. Refson, and J. D. C. McConnell. 1991b. Computer simulation of interlayer water in 2:1 clays. J. Chem. Phys. 94: 7434–7445.

    Article  Google Scholar 

  • Skipper, N. T., K. Refson, and J. D. C. McConnell. 1993. Monte Carlo simulations of Mg- and Na-smectites. In Geochemistry of Clay-Pore Fluid Interactions. D. C. Manning, P. L. Hall, and C. R. Hughs, eds. London: Chapman and Hall, 40–59.

    Google Scholar 

  • Smith, D. E., and A. D. J. Haynet. 1992. Structure and dynamics of water and aqueous solutions: The role of flexibility. J. Chem. Phys. 96: 8450–8459.

    Article  Google Scholar 

  • Spohr, E., and K. Heinzinger. 1988. Computer simulations of water and aqueous electrolyte solutions at interfaces. Electrochim. Acta 33: 1211–1222.

    Article  Google Scholar 

  • Sposito, G. 1984. The Surface Chemistry of Soils. New York: Oxford University Press, 47–77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skipper, N.T., Chang, FR.C. & Sposito, G. Monte Carlo Simulation of Interlayer Molecular Structure in Swelling Clay Minerals. 1. Methodology. Clays Clay Miner. 43, 285–293 (1995). https://doi.org/10.1346/CCMN.1995.0430303

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1995.0430303

Key words

Navigation