Skip to main content
Log in

Rotationally Disordered Illite/Smectite in Paleozoic K-Bentonites

  • Published:
Clays and Clay Minerals

Abstract

The three-dimensional crystal structure of rotationally disordered illite/smectite (I/S) in K-bentonite samples from the Appalachian basin and neighboring areas is described using the parameters of 1) P0, the proportion of zero-degree layer stacking rotations, such as in the polytype series 1Md-1M 2) Pcv, the proportion of 2:1 layers with cis-vacant (cv) octahedral sites that are randomly interstratified with trans-vacant (tv) layers; and 3) P60 the proportion of layers with n·60° rotations (as opposed to n·120°) in the rotated layers. These parameters were determined by computer modeling of experimental randomly oriented powder X-ray diffraction patterns.

The proportion of cv interstratification in the I/S increases with A1 and decreases with Mg and Fe content. The proportion of n·60° rotations in the rotated layers increases with Mg and Fe content. The cv 120° disordered structure correlates with tetrahedral A1 for Si substitution and increasing tetrahedral charge. The tv n·60° disordered structures correlate with octahedral Mg for A1 substitution. The data indicate that the type of unit cell and nature of rotational disorder in I/S is controlled by the octahedral Mg content. The three-dimensional structures do not show any systematic correlation with Reichweite and percent expandability as determined from diffraction patterns of oriented sample preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altaner, S. P., and C. M. Bethke. 1988. Interlayer order in illite/smectite. American Mineralogist 73: 766–774.

    Google Scholar 

  • Bailey, S. W. 1966. The status of clay mineral structures. Clays & Clay Miner. 14: 1–23.

    Article  Google Scholar 

  • Bailey, S. W. 1980. Structures of layer silicates. In Crystal Structures of Clay Minerals and their X-Ray Identification. G. W. Brindley and G. Brown, eds. London: Mineralogical Society, 1–124.

    Google Scholar 

  • Bailey, S. W. 1984. Crystal chemistry of the true micas, Chapter 2. In Micas. S. W. Bailey, ed. Reviews in Mineralogy Vol. 13, Blacksburg, Virginia: Mineralogical Society of America, 13–60.

    Chapter  Google Scholar 

  • Bethke, C. M., and S. Marshak. 1990. Brine migrations across North American—The plate tectonics of groundwater. Annu. Rev. Earth Planet Sci. 18: 287–315.

    Article  Google Scholar 

  • Dennison, J. M., and D. A. Textoris. 1970. Devonian Tioga tuff in northeastern United States. Bulletin Volcanogenique 34: 289–293.

    Article  Google Scholar 

  • Dolasse, W. A. 1986. Correction of intensities for preferred orientation in powder diffractometry. Application of the March model. J. Appl. Cryst. 19: 267–272.

    Article  Google Scholar 

  • Drits, V. A., B. A. Plançon, B. A. Sakharov, G. Besston, S. I. Tsipursky, and C. Tchoubar. 1984. Diffraction effects calculated for structural models of K-saturated montmorillonite containing different types of defects. Clay Miner. 19: 541–561.

    Article  Google Scholar 

  • Drits, V. A., and C. Tchoubar. 1990. X-ray Diffraction by Disordered Lamellar Structures. New York: Springer-Verlag, 371 pp.

    Book  Google Scholar 

  • Drits, V. A., F. Weber, A. L. Salyn, and S. I. Tsipursky. 1993. X-ray identification of one-layer illite varieties. Application to the study of illites around uranium deposits of Canada. Clays & Clay Miner. 41: No. 3, 389–398.

    Article  Google Scholar 

  • Drits, V. A., and D. K. McCarty. 1995. The nature of diffraction effects from illite and illite/smectite consisting of interstratified trans-vacant and cis-vacant 2:1 layers; A semiquantitative technique for determination of layer-type content. Amer. Miner, (in review).

    Google Scholar 

  • Droste, J. B., and C. J. Vitiliano. 1973. Tioga bentonite (Middle Ordovician) of Indiana. Clays & Clay Miner. 21: 9–13.

    Article  Google Scholar 

  • Elliott, W. C., and J. L. Aronson. 1987. Alleghanian episode of K-bentonite illitization in the southern Appalachian basin. Geology 15: 735–739.

    Article  Google Scholar 

  • Elliott, W. C., and J. L. Aronson. 1993. The timing and extent of illite formation in Ordovician K-bentonites at the Cincinnati Arch, Nashville Dome and north-eastern Illinois basin. Basin Research 5: 125–135.

    Article  Google Scholar 

  • Güven, N. 1971. Structural factors controlling stacking sequences in dioctahedral micas. Clays & Clay Miner. 134: 159–165.

    Article  Google Scholar 

  • Harris, A. G. 1979. Conodont color alteration, an organomineral metamorphic index and its application to Appalachian Basin geology. In Aspects of Diagenesis. P. A. Scholle and P. R. Schluger, eds. Society of Economic Paleontologists and Mineralogists Special Publication 26: 3–16.

    Article  Google Scholar 

  • Hearn, P. P., J. F. Sutter, and H. E. Belkin. 1987. Evidence for Late-Paleozoic brine migration in Cambrian carbonate rocks of the central and southern Appalachians. Implications for Mississippi Valley-type sulfide mineralization. Geochim. Cosmoch. Acta 51: 1323–1334.

    Article  Google Scholar 

  • Hower, J., E. V. Eslinger, M. E. Hower, and E. A. Perry. 1976. Mechanism of burial metamorphism of argillaceous sediment, mineralogical and chemical evidence. Geol. Soc. of Amer. Bull. 87: 725–737.

    Article  Google Scholar 

  • Huff, W. D., and A. G. Türkmenoglu. 1981. Chemical characteristics and origin of Ordovician K-bentonites along the Cincinnati Arch. Clays & Clay Miner. 29: 113–123.

    Article  Google Scholar 

  • Jennings, S., and G. R. Thompson. 1986. Digenesis of Plio-Pleistocene sediments of the Colorado River Delta, southern California. J. Sed. Petrology 56: 89–98.

    Google Scholar 

  • Johnsson, M. J. 1984. The thermal and burial history of south central New York: Evidence from vitrinite reflectance, clay mineral diagenesis and fission track dating of apatite and zircon: Masters thesis. Dartmouth College, Hanover, New Hampshire, 155 pp.

    Google Scholar 

  • Kolata, D. R., J. K. Frost, and W. D. Huff. 1984. K-bentonites of the Ordovician Decorah Subgroup, upper Mississippi Valley: Correlation by chemical fingerprinting. Illinois State Geological Survey, Circular 537, 30 pp.

    Google Scholar 

  • Maxwell, D. T., and J. Hower. 1967. High-grade diagenesis and low-grade metamorphism of illite in the Precambrian Belt Series. Amer. Miner. 52: 843–857.

    Google Scholar 

  • McCarty, D. K., and G. R. Thompson. 1991. Burial diagenesis in two Montana Tertiary basins. Clays & Clay Miner. 39: 293–305.

    Article  Google Scholar 

  • Méring, J. and A. Oberlin. 1967. Electron-optical study of smectites: Clays & Clay Miner. 17th Nat. Conf., Pergamon Press, 3–25.

    Google Scholar 

  • Mitchell, C. E. 1992. Chronostratigraphy of the Trenton Group and Utica Shale, Pt. I: Preliminary revision of lith- ofacies and age relationships. Abstracts with Programs, 1992 GSA Annual Meeting, Cincinnati, Ohio.

    Google Scholar 

  • Moore, D. M., and R. C. Reynolds Jr. 1989. X-ray Diffraction and the Identification and Analysis of Clay Minerals. New York: Oxford University Press, 332 pp.

    Google Scholar 

  • Oliver, J. 1986. Fluids expelled tectonically from orogenic belts: Their in hydrocarbon migration and other geologic phenomena. Geology 14: 99–102.

    Article  Google Scholar 

  • Perry, E., and J. Hower. 1970. Burial diagenesis in Gulf Coast pelitic sediments. Clays & Clay Miner. 18: 165–177.

    Article  Google Scholar 

  • Plançon, A. 1981. Diffraction by layer structures containing different kinds of layers and stacking faults. J. Appl. Cryst. 14: 300–304.

    Article  Google Scholar 

  • Plançon, A., and C. Tchoubar. 1977a. Determination of structural defects in phyllosilicates by X-ray powder diffraction—I. Principle of calculation of the diffraction phenomenon. Clays & Clay Miner. 25: 430–435.

    Article  Google Scholar 

  • Plançon, A., and C. Tchoubar. 1977b. Determination of structural defects in phyllosilicates by X-ray powder diffraction—II. Nature and proportion of defects in natural kaolinite. Clays & Clay Miner. 25: 436–450.

    Article  Google Scholar 

  • Plançon, A., R. F. Giese, and R. Snyder. 1988. The Hinckley index for kaolinites. Clay Miner. 23: 249–260.

    Article  Google Scholar 

  • Radoslovich, E. W. 1959. Structural control of polymorphism in micas. Nature 183: 253–254.

    Article  Google Scholar 

  • Radoslovich, E. W., and K. Norrish. 1962. The cell dimensions and symmetry of layer lattice silicates. I. Some structural considerations. Amer. Miner. 47: 599–616.

    Google Scholar 

  • Reynolds, R. C. 1985. NEWMOD computer program for the calculation ofthe one-dimensional X-ray diffraction patterns of mixed-layer clays. R. C. Reynolds, ed. Dept, of Earth Sciences, Dartmouth College, Hanover, New Hampshire 03755.

  • Reynolds, R. C. 1992. X-ray diffraction studies of illite/ smectite from rocks, < 1 μm randomly oriented powders, and < 1 μm oriented powder aggregates: The absence of laboratory-induced artifacts. Clays & Clay Miner. 40: 387–396.

    Article  Google Scholar 

  • Reynolds, R. C. 1993. Three-dimensional powder X-ray diffraction from disordered illite: Simulation and interpretation of the diffraction patterns. In CMS Workshop Lectures, Vol. 5. Computer Applications to X-ray Powder Diffraction Analysis of Clay Minerals. R. C. Reynolds Jr. and J. R. Walker, eds. Boulder, Colorado: The Clay Minerals Society, 43–77.

    Google Scholar 

  • Reynolds, R. C., and C. H. Thomson. 1993. Illite from the Potsdam Sandstone of New York: A probable noncentrosymmetric mica structure. Clays & Clay Miner. 41: 66–72.

    Article  Google Scholar 

  • Roden, M. K., D. S. Miller, W. C. Elliott, and J. L. Aronson. 1992. The thermal history of the distal margin and interior of the southern Appalachian basin from combined fissiontrack and K/Ar studies of K-bentonites (abstract). 27th Annual Northeastern Section of the Geological Society of A merican Meeting 24, no. 3, p. 49.

    Google Scholar 

  • Roden, M. K., W. C. Elliott, J. L. Aronson, and D. S. Miller. 1993. A comparison of fission-track ages of apatite and zircon to the K/Ar ages of illite/smectite (I/S) from Ordovician K-bentonites, southern Appalachian basin. Journal of Geology 101: 633–641.

    Article  Google Scholar 

  • Sakharov, B. A., G. Besson, V. A. Drits, M. Yu Kamenava, A. L. Salyn, and B. B. Smoliar. 1990. X-ray study of the nature of stacking faults in the structure of glauconites. Clay Miner. 25: 419–435.

    Article  Google Scholar 

  • Srodon, J., D. J. Morgan, E. V. Eslinger, D. D. Eberl, and M. R. Karlinger. 1986. Chemistry of illite/smectite and endmember illite. Clays & Clay Miner. 34: 368–378.

    Article  Google Scholar 

  • Tsipursky, S. I., and V. A. Drits. 1984. The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction. Clay Miner. 19: 177–193.

    Article  Google Scholar 

  • Velde, B. 1965. Experimental determination of muscovite polymorph stabilities. Amer. Miner. 50: 436–449.

    Google Scholar 

  • Yoder, H. S., and H. P. Eugster. 1955. Synthetic and natural muscovites. Geochim. Cosmochim. Acta 8: 225–280.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCarty, D.K., Reynolds, R.C. Rotationally Disordered Illite/Smectite in Paleozoic K-Bentonites. Clays Clay Miner. 43, 271–284 (1995). https://doi.org/10.1346/CCMN.1995.0430302

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1995.0430302

Key words

Navigation