Skip to main content
Log in

Sorption of Cesium on Compacted Bentonite

  • Published:
Clays and Clay Minerals

Abstract

Sorption parameters are important components of models used to predict mass transport through dense or compacted earthen materials. These parameters are, however, generally determined in batch tests with loose, unconsolidated materials. Here we directly measure, using a specially designed cell, the extent of Cs+ sorption on bentonite compacted to a series of densities ranging from 0.50 to 1.50 Mg/m3, and compare the results with those obtained from batch tests with loose bentonite. The clay was saturated with a Na-Ca-Cl-dominated solution with an effective ionic strength of 220 mol/m3. The sorption data were expressed as distribution coefficients, Kd. Over the clay density range examined, IQ values for Cs+ with compacted clay are about one-half to one-third the value of those with loose clay. The lower sorption on compacted clay is attributed to small and occluded pores that Cs+ cannot enter; thus it cannot access the entire volume, or all the sorption sites, of compacted clay. The data suggest that reasonable estimates of Kd with compacted clay can be obtained by scaling down the Kd values measured on loose clay by a factor na/n, where na is the accessible porosity and n the total porosity of compacted clay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts, J. J., J. E. Pinder, E. Wurtz, and S. Lesnek. 1986. The effect of pH, solid phase, particle concentration and equilibrium time on the partition coefficients of curium on natural sediments. In Application of Distribution Coefficients to Radiological Assessment Models. T. H. Sibley and C. Myttenaere, eds. London: Elsevier Applied Science Publishers, 72–82.

    Google Scholar 

  • Chang, K.-P., C.-N. Hsu, and H. Tamaki. 1993. Basic study of 137Cs sorption on soil. J. Nucl. Sci. Technol. 30: 1243–1247.

    Article  Google Scholar 

  • Cho, W. J., D. W. Oscarson, M. N. Gray, and S. C. H. Cheung. 1993. Influence of diffusant concentration on diffusion coefficients in clay. Radiochim. Acta 60: 159–163.

    Article  Google Scholar 

  • Frape, S. K., P. Fritz, and R. H. McNutt. 1984. Water-rock interaction and chemistry of groundwaters from the Canadian Shield. Geochim. Cosmochim. Acta 48: 1617–1627.

    Article  Google Scholar 

  • Gillham, R. W., and J. A. Cherry. 1982. Contaminant migration in saturated unconsolidated geologic deposits. In Recent Trends in Hydrogeology. T. N. Narasimhan, ed. GSA Special Paper 189, Boulder, Colorado: Geological Survey of America, 31–62.

    Chapter  Google Scholar 

  • Gillham, R. W., M. J. L. Robin, D. J. Dytynyshyn, and H. M. Johnston. 1984. Diffusion of nonreacti ve and reactive solutes through fine-grained barrier materials. Can. Geo-tech. J. 21: 541–550.

    Article  Google Scholar 

  • Hancox, W. T., and K. Nuttall. 1991. The Canadian approach to safe, permanent disposal of nuclear fuel waste. Nucl. Eng. Des. 129: 109–117.

    Article  Google Scholar 

  • Hume, H. B. 1993. Procedures and apparatus for measuring diffusion and distribution coefficients in compacted clays: AECL Research Report, AECL-10981, COG-93-447. Chalk River, Ontario: AECL Research.

    Google Scholar 

  • Jury, W. A., and M. Ghodrati. 1989. Overview of organic chemical environmental fate and transport modelling approaches. In Reactions and Movement of Organic Chemicals in Soils. B. L. Sawhney and K. Brown, eds. Soil Science Society of America Special Publication Number 22. Madison, Wisconsin: Soil Science Society of America, Inc., 271–304.

    Google Scholar 

  • Meier, H., E. Zimmerhackl, G. Zeitler, P. Menge, and W. Hecker. 1987. Influence of liquid/solid ratios in radionuclide migration studies. J. Radioanal. Nucl. Chem. 109: 139–151.

    Article  Google Scholar 

  • Miyahara, K., T. Ashida, Y. Kohara, Y. Yusa, and N. Sasaki. 1991. Effect of bulk density on diffusion for cesium in compacted sodium bentonite. Radiochim. Acta 52/53:293–297.

    Article  Google Scholar 

  • Muurinen, A., P. Penttilä-Hiltunen, and J. Rantanen. 1987. Diffusion mechanisms of strontium and cesium in compacted sodium bentonite. In Mat. Res. Soc. Symp. Proc. J. K. Bates and W. B. Seefeldt, eds. Pittsburgh, PA: Materials Research Society, Vol. 84, 803–812.

    Google Scholar 

  • Nightingale, E. R., Jr. 1959. Phenomenological theory of ion solvation. Effective radii of hydrated ions. J. Phys. Chem. 63: 1381–1387.

    Article  Google Scholar 

  • O’Connor, D. J., and J. P. Connolly. 1980. The effect of concentration of adsorbing solids on the partition coefficient. Water Res. 14: 1517–1523.

    Article  Google Scholar 

  • Oscarson, D. W. 1994. Comparison of measured and calculated diffusion coefficients for iodide in compacted clays. Clay Miner. 29: 145–151.

    Article  Google Scholar 

  • Oscarson, D.W., D.A. Dixon, and M.N. Gray. 1990. Swelling capacity and permeability of an unprocessed and a processed bentonitic clay. Eng. Geol. 28: 281–289.

    Article  Google Scholar 

  • Oscarson, D. W., and D. A. Dixon. 1989. Elemental, min-eralogical, and pore-solution composition of selected Canadian clays. AECL Research Report, AECL-9891. Chalk River, Ontario: AECL Research.

    Google Scholar 

  • Oscarson, D. W., and H. B. Hume. 1994. Diffusion of 14C in dense saturated bentonite under steady-state conditions. Transport in Porous Media 14: 73–84.

    Article  Google Scholar 

  • Oscarson, D. W., H. B. Hume, N. G. Sawatsky, and S. C. H. Cheung. 1992. Diffusion of iodide in compacted bentonite. Soil Sci. Soc. Am. J. 56: 1400–1406.

    Article  Google Scholar 

  • Oscarson, D. W., R. L. Watson, and H. G. Miller. 1987. The interaction of trace levels of cesium with monmoril-lonitic and illitic clays. Appl. Clay Sci. 2: 29–39.

    Article  Google Scholar 

  • Ryan, S. R., and F. King. 1994. The adsorption of Cu(II) on sodium bentonite in a synthetic saline groundwater. AECL Research Report, AECL-11062, COG-94-125. Chalk River, Ontario: AECL Research.

    Google Scholar 

  • Sato, H., T. Ashida, Y. Kohara, M. Yui, and N. Sasaki. 1992. Effect of dry density on diffusion of some radionuclides in compacted sodium bentonite. J. Nucl. Sci. Technol. 29: 873–882.

    Article  Google Scholar 

  • Sharma, H. D., and D. W. Oscarson. 1991. Diffusion of plutonium in mixtures of bentonite and sand at pH 3. AECL Research Report, AECL-10435. Chalk River, Ontario: AECL Research.

    Google Scholar 

  • Sposito, G. 1984. The Surface Chemistry of Soils. New York: Oxford University Press. 234 pp.

    Google Scholar 

  • Yong, R. N., A. M. O. Mohamed, and B. P. Warkentin. 1992. Principles of Contaminant Transport in Soils. New York: Elsevier. 327 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oscarson, D.W., Hume, H.B. & King, F. Sorption of Cesium on Compacted Bentonite. Clays Clay Miner. 42, 731–736 (1994). https://doi.org/10.1346/CCMN.1994.0420609

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1994.0420609

Key Words

Navigation