Clays and Clay Minerals

, Volume 42, Issue 5, pp 572–575 | Cite as

Oxygen Isotopic Constraints on the Origin of Nodular Silica-Apatite from the Har Peres Pyroclastics, Golan Heights, Israel

  • C. Mizota
  • N. Yoshida


Oxygen isotope composition of three types of unique nodules which consist of amorphous silica-apatite, cristobalite-apatite and tridymite-apatite associations interspersed amidst basaltic pyroclastics from the Har Peres volcano, Golan Heights, Israel is reported. Unusual isotopic temperature (75°C estimated from oxygen isotope fractionation between cristobalite (δ18O = +25.5‰)-apatite (δ18O = +12.9‰) pair suggests that the nodule was not formed by present-day pedogenesis as has been previously proposed, but was a xenolith incorporated probably from the underlying siliceous phosphorites at a higher temperature. An observed negative oxygen isotopic fractionation (δ18O = −5.1‰) between tridymite (δ18O = +9.9‰) and associated apatite (δ18O = +15.0‰) is indicative of the nodular formation under disequilibrium conditions. A plausible mechanism of formation of the apatite (and calcite) associated with tridymite is an epitaxial overgrowth on template tridymite of magmatic origin under the current weathering regime. Oxygen isotopic evidence indicates a complicated origin for the nodules.

Key Words

Apatite Har Peres pyroclastics Oxygen isotope 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Clayton, R.N., and T. K. Mayeda. 1963. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopie analysis. Geochim. Cosmochim. Acta. 27: 43–52.CrossRefGoogle Scholar
  2. Craig, H. 1961. Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133: 1833–1834.CrossRefGoogle Scholar
  3. Dan, J., and A. Singer. 1973. Soil evolution on basalt and basic pyroclastic materials in the Golan Heights. Geoderma 9: 165–192.CrossRefGoogle Scholar
  4. Friedman, I., and J. R. O’Neil. 1977. Compilation of stable isotope fractionation factors of geochemical interest. In Date of Geochemistry, 6th Edition. I. Friedman and J. R. O’Neil, eds. U.S. Geol. Surv. Prof. Paper. 44. pp.Google Scholar
  5. Garlick, G. D. 1969. The stable isotopes of oxygen. In Handbook of Geochemistry 2, K. H. Wedepohl, ed. New York: Springer-Verlag, par. 1. chapter 8B.Google Scholar
  6. Gat, J. R., and W. Dansgaard. 1972. Stable isotope survey of the fresh water occurrences in Israel and the northern Jordan Rift Valley. J. Hydrol. 16: 177–212.CrossRefGoogle Scholar
  7. Hoefs, J. 1980. Stable Isotope Geochemistry, 2nd Edition. New York: Springer-Verlag. 20. pp.CrossRefGoogle Scholar
  8. Juillet Ledere, A., and L. Labeyrie. 1987. Temperature dependence of the oxygen isotope fractionation between diatom silica and water. Earth Planet. Sci. Lett. 84: 69–74.CrossRefGoogle Scholar
  9. Kyser, T. K. 1987. Equilibrium fractionation factors for stable isotopes. In Stable Isotope Geochemistry of Low Temperature Processes. Short Course Handbook, Vol. 13. T. K. Kyser, ed. Mineralogical Association of Canada, 1–84.Google Scholar
  10. Lang, B., M. Shirav, and R. Bogoch. 1979. Volcanological aspects of the Har Peres composite volcano, Golan Plateau. Isr. J. Earth Sci. 28: 27–32.Google Scholar
  11. Margaritz, M., A. Kaufman, and D. H. Yaalon. 1981. Calcium carbonate nodules in soils: , 8O/16O and 13C/12C and 14C contents. Geoderma 25: 157–172.CrossRefGoogle Scholar
  12. McCrea, J. M. 1950. On the isotopie chemistry of carbonates and a paleotemperature scale. J. Chem. Phys. 18: 849–857.CrossRefGoogle Scholar
  13. Mizota, C., Y. Domon, and N. Yoshida. 1992. Oxygen isotope composition of natural phosphates from volcanic ash soils of the Great Rift Valley of Africa and east Java, Indonesia. Geoderma Sii: 111–123.Google Scholar
  14. Shemesh, A., and Y. Kolodny. 1988. Oxygen isotopes variations in phosphates from the southern Tethys. Isr. J. Earth Sci. 37: 1–15.Google Scholar
  15. Shemesh, A., Y. Kolodny, and B. Luz. 1988. Isotope geochemistry of oxygen and carbon in phosphate and carbonate of phosphorite fracolite. Geochim. Cosmochim. Acta. 52: 2565–2572.CrossRefGoogle Scholar
  16. Singer, A., and E. Ben-Dor. 1987. Origin of red clay layers interbeded with basalts of the Golan Heights. Geoderma 39: 293–306.CrossRefGoogle Scholar
  17. Singer, A., A. Silber, and D. Szafranek. 1991. Nodular silica-phosphate minerals of the Har Peres pyroclastics, Golan Heights. TV. Jb. Miner. Mh. 8: 337–354.Google Scholar
  18. Tudge, A. P. 1960. A method of analysis of oxygen isotopes in orthophosphates—Its use in the measurement of paleo-temperatures. Geochim. Cosmochim. Acta. 18: 81–93.CrossRefGoogle Scholar
  19. Vengosh, A., Y. Kolodny, and M. Tepperberg. 1987. Multiphase oxygen isotopie analysis as a tracer of diagenesis: The example of the Mishash Formation, Cretaceous of Israel. Chem. Geol. (Isotope Geosci. Sec.) 65: 235–253.CrossRefGoogle Scholar
  20. Yamasaki, M. 1937. Occurrence of tridymite from Ishiga-mi-yama, Kumamoto. Warera No Kobutsu 6: 30–31 (in Japanese).Google Scholar

Copyright information

© The Clay Minerals Society 1994

Authors and Affiliations

  • C. Mizota
    • 1
  • N. Yoshida
    • 2
  1. 1.Faculty of AgricultureIwate UniversityMoriokaJapan
  2. 2.Faculty of ScienceToyama UniversityToyamaJapan

Personalised recommendations