Skip to main content
Log in

Evaluation of Standard Free Energies of Formation of Clay Minerals by an Improved Regression Method

  • Published:
Clays and Clay Minerals

Abstract

An improved regression method for the evaluation of standard free energies of formation (ΔG°f) of clay minerals is here proposed in an attempt to remove some of the limitations of the earlier method (Chen, 1975). Particularly, this method suggests a procedure for the assignment of rankings for Σ ΔG°f, i values. Moreover, an iterative least-squares fitting technique is applied to solve the exponential equation to obtain the estimated ΔG°f. The estimated ΔG°f data for the various standard clay minerals are derived and compared with data available in the literature; in general, there is good agreement between the values. It is also shown how the regression method can be extended to clay minerals of variable composition. The ΔG°f’s for several such minerals have been evaluated; a large number of combination equations required for such computations have been listed, so that for other similar minerals the process of evaluation of ΔG°f is greatly simplified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aagaard, P. and Helgeson, H. C. (1983) Activity composition relations among silicates and aqueous solutions: II. Chemical and thermodynamic consequences of ideal mixing of atoms on homological sites in montmorillonites, illites and mixed-layer clays: Clays & Clay Minerals 31, 207–217.

    Article  Google Scholar 

  • Barany, R. and Kelley, K. K. (1961) Heats and free energies of formation of gibbsite, kaolinite, halloysite and dickite: U.S. Bur. Mines Report Investigation 5825, 1–13.

    Google Scholar 

  • Bricker, O. P., Nesbitt, H. W., and Gunter, W. D. (1973) The stability of talc: Amer. Mineral. 58, 64–72.

    Google Scholar 

  • Chen, C. (1975) A method of estimation of standard free energies of formation of silicate minerals at 298.15°K: Am. J. Sci. 275, 801–817.

    Article  Google Scholar 

  • Christ, C. L., Hostetler, P. B., and Sieben, R. M. (1973) Studies in the system MgO-SiO2-CO2-H2O (III): The activity product constant of sepiolite: Am. J. Sci. 273, 65–83.

    Article  Google Scholar 

  • Draper, N. R. and Smith, H. (1981) Applied Regression Analysis: John Wiley & Sons, New York, 458–465.

    Google Scholar 

  • Fritz, B. (1985) Multicomponent solid solutions for clay minerals and computer modeling of weathering processes: in The Chemistry of Weathering, J. L. Drever, ed., D. Reidel, Dordrecht, 19–34.

    Chapter  Google Scholar 

  • Grim, R. E. (1968) Clay Mineralogy: McGraw-Hill, New York, 86 pp.

    Google Scholar 

  • Harary, F. (1972) Graph Theory: Adison-Wesley, Reading, Mass., 32–42.

    Google Scholar 

  • Helgeson, H. C. (1969) Thermodynamics of hydrothermal systems at elevated temperatures and pressures: Am. J. Sci. 267, 729–804.

    Article  Google Scholar 

  • Helgeson, H. C., Delany, J. M., Nesbitt, H. W., and Bird, D. K. (1978) Summary and critique of the thermodynamic properties of rock forming minerals: Am. J. Sci. 278A, 1–220.

    Google Scholar 

  • Huang, W. H. and Keller, W. D. (1973) Gibbs free energies of formation calculated from dissolution data using specific mineral analysis. III. Clay minerals: Amer. Mineral. 58, 1023–1028.

    Google Scholar 

  • Jackson, M. L. (1965) Chemical compositions of soils: in Chemistry of the Soil, F. E. Bear, ed., Oxford & I.B.H., Calcutta, pp. 95–100.

    Google Scholar 

  • Karpov, I. K. and Kashik, S. A. (1968) Computer calculation of standard isobaric-isothermal potentials of silicates by suitable regression from a crystallochemical classification: Geochem. Internat!. 6, 706–713.

    Google Scholar 

  • Kittrick, J. A. (1971a) Stability of montmorillonites: I. Belle Fourche and Clay Spur montmorillonites: Soil Sci. Soc. Am. Proc. 35, 140–145.

    Article  Google Scholar 

  • Kittrick, J. A. (1971b) Stability of montmorillonites: II. Aberdeen montmorillonite: Soil Sci. Soc. Am. Proc. 35, 820–823.

    Article  Google Scholar 

  • Lippman, F. (1977) The solubility products of complex minerals, mixed crystals and three-layer clay minerals: Neues. Jahrb. Mineral Abh. 130, 243–263.

    Google Scholar 

  • Lippmann, F. (1981) The thermodynamic status of clay minerals: in Proc. 7th Internatl. Clay Conf, H. van Olphen and F. Veniale, eds., Elsevier, Amsterdam, 475–485.

    Google Scholar 

  • Mattigod, S. V. and Sposito, G. (1978) Improved method for estimating the standard free energies of formation of smectites: Geochim. Cosmochim. Acta 42, 1753–1762.

    Article  Google Scholar 

  • Mukherjee, A. (1979) Gibbs free energy of phlogopite—a discussion with reference to the reaction: Biotite + 3 quartz = K-feldspar + 3 orthopyroxene + H2O: Am. J. Sci. 279, 1083–1086.

    Article  Google Scholar 

  • Nriagu, J. O. (1975) Thermochemical approximations for clay minerals: Amer. Mineral. 60, 834–839.

    Google Scholar 

  • Reesman, A. L. (1974) Aqueous dissolution studies of illite under ambient conditions: Clays & Clay Minerals 22, 443–454.

    Article  Google Scholar 

  • Reesman, A. L. and Keller, W. D. (1968) Aqueous solubility studies of high-alumina and clay minerals: Amer. Mineral. 53, 929–942.

    Google Scholar 

  • Robie, R. A., Hemingway, B. S., and Fisher, J. R. (1978) Thermodynamic properites of minerals and related sub-stances at 298.15°K and 1 atmosphere pressure and at higher temperatures: U.S. Geol. Survey Bull. 1452, 1–456.

    Google Scholar 

  • Rouston, R. C. and Kittrick, J. A. (1971) Illite solubility: Soil Sci. Soc. Am. Proc. 35, 714–718.

    Article  Google Scholar 

  • Scarborough, J. B. (1976) Numerical Mathematical Analysis: Oxford & IBH, New Delhi, 545–547.

    Google Scholar 

  • Slaugher, M. (1966) Chemical binding in the silicate minerals. Part I. Model for determining crystal-chemical properties. Part II. Computational methods and approximations for the binding energy of complex silicates. Part III. Application of energy calculations to the prediction of silicate mineral stability: Geochim. Cosmochim. Acta 30, 299–313, 315–339.

    Article  Google Scholar 

  • Sposito, G. (1986) The polymermodel of thermochemical clay mineral stability: Clays & Clay Minerals 34, 198–203.

    Article  Google Scholar 

  • Tardy, Y. and Fritz, B. (1981) An ideal solid solution model for calculating solubility of clay minerals: Clay Miner. 16, 361–373.

    Article  Google Scholar 

  • Tardy, Y. and Garrels, R. M. (1974) A method of estimating the Gibbs energies of formation of layer silicates: Geochim. Cosmochim. Acta 38, 1101–1116.

    Article  Google Scholar 

  • Tardy, Y., Duplay, J., and Fritz, B. (1987) Stability fields of smectites and illites as a function of temperature and chemical composition: in Geochemistry and Mineral Formation at the Earth Surface, R. R. Demente and Y. Tardy, eds., CSIC, Granada, 462–494.

    Google Scholar 

  • van Heeswijk, M. and Fox, C. G. (1988) Iterative method and Fortran code for nonlinear curve fitting: Comput. Geosci. 14, 489–503.

    Article  Google Scholar 

  • Varadachari, C. (1992) Constructing phase diagrams for silicate minerals in equilibrium with an aqueous phase: A theoretical approach: Soil Sci. 153, 5–12.

    Article  Google Scholar 

  • Weaver, C. E. and Pollard, L. D. (1973) The Chemistry of Clay Minerals: Elsevier, Amsterdam, 10–11.

    Google Scholar 

  • Zen, E-An (1972) Gibbs free energy, enthalpy and entropy of ten rock-forming minerals: Calculations, discrepancies, implications: Amer. Mineral 57, 524–553.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varadachari, C., Kudrat, M. & Ghosh, K. Evaluation of Standard Free Energies of Formation of Clay Minerals by an Improved Regression Method. Clays Clay Miner. 42, 298–307 (1994). https://doi.org/10.1346/CCMN.1994.0420308

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1994.0420308

Key Words

Navigation