Skip to main content
Log in

Stable Isotope Geochemistry of Kaolinite from the “White Section,” Black Ridge, Clermont, Central Queensland: Implications For The Age And Origin of the “White Section”

  • Published:
Clays and Clay Minerals

Abstract

Kaolinite from the Black Ridge, Clermont, has relatively low δ18O (12.3‰ to 14.8‰) and very low δD values with a large variation (−120‰ to −85‰). Comparison of these data with those from the nearby Denison Trough and elsewhere in eastern Australia, together with previous studies of the mineralogy of the sedimentary rocks, suggests that extensive kaolinization of the “White Section” resulted from weathering during the Late Triassic to Early Jurassic periods. The relatively large variation in δD values of kaolinite probably derives from post-formational isotopic exchange with other fluids.

The similarity between δ18O values of kaolinites from Black Ridge and from the Denison Trough suggests that the small Miclere-Black Ridge basin may have been part of the Denison Trough before the Late-Triassic inversion. The preservation of original δD values in kaolinite at Black Ridge indicates that unlike the Denison Trough, which was reburied at more than 1000 m, the Miclere-Black Ridge basin was not rebuffed at great depth during the Mesozoic period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, J. C. and Golding, S. D. (1992) Occurrence and palaeohydrological significance of authigenic kaolinite in the Aldebaran Sandstone, Denison Trough, Queensland, Australia: Clays & Clay Minerals 40, 273–279.

    Article  Google Scholar 

  • Ball, L. C. (1906) Black Ridge, Clermont: Geol. Sur. Qld. Pub., 25–134.

    Google Scholar 

  • Beeston, J. W. (1978) New evidence for a Permian age for the Blair Athol “White Section”: Qld. Govt. Min. J. 79, 157–158.

    Google Scholar 

  • Bird, M. I. and Chivas, A. R. (1988) Stable-isotope evidence for low-temperature kaolinitic weathering and post-formational hydrogen-isotope exchange in permian kaolinites: Chem. Geol. 72, 249–265.

    Google Scholar 

  • Bird, M. I. and Chivas, A. R. (1989) Stable-isotope geology of the Australian regolith: Geochim. Cosmochim. Acta 53, 3239–3256.

    Article  Google Scholar 

  • Clayton, R. N. and Mayeda, T. K. (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis: Geochim. Cosmochim. Acta 27, 43–52.

    Article  Google Scholar 

  • Coleman, M. L., Shepherd, T. J., Durham, J. J., Rouse, J. E., and Moore, G. R. (1982) Reduction of water with zinc for hydrogen isotope analysis: Anal. Chem. 54, 993–995.

    Article  Google Scholar 

  • Cook, F. W. and Taylor, C. P. (1979) Permian strata of the Wolfang Basin: Qld. Govt. Min. J. 80, 342–349.

    Google Scholar 

  • Craig, H. (1961) Isotopic variations in meteoric waters: Science 133, 1702–1703.

    Article  Google Scholar 

  • Dickins, J. M. and Malone, E. J. (1973) Geology of the Bowen Basin, Queensland: B.M.R. Aust. Bull. 130, 154 pp.

  • Lambert, S. J. and Epstein, S., (1980) Stable isotope investigations of an active geothermal system in Valles Caldera, Jemez Mountains, New Mexico: J. Vol. Geotherm. Res. 8, 111–129.

    Article  Google Scholar 

  • Land, L. S. and Dutton, S. P. (1978) Cementation of Pennsylvanian deltaic sandstone: Isotope data: J. Sedimen. Petrol. 48, 1167–1176.

    Google Scholar 

  • Lawrence, J. R. and Taylor Jr., H. P. (1971) Deuterium oxygen-correlation clay minerals and hydrooxygen in Quaternary soils compared to meteoric waters: Geochim. Cosmochim. Acta 35, 993–1003.

    Article  Google Scholar 

  • Lawrence, J. R. and Taylor Jr., H. P. (1972) Hydrogen and oxygen isotope systematics in weathering profiles: Geochim. Cosmochim. Acta 36, 1371–1393.

    Article  Google Scholar 

  • Longstaffe, F. J. (1984) The role of meteoric water in diagenesis of shallow sandstone: Stable-isotope studies of the Milk River aquifer and gas pool, southeastern Alberta: in Clastic Diagenesis, D. A. McDonald and R. C. Surdam, eds., AAPG Mem. 37, 81–97.

    Google Scholar 

  • Longstaffe, F. J. and Avner, A. (1990) Hydrogen-isotope geochemistry of diagenetic clay minerals from Cretaceous sandstone, Alberta, Canada: Applied Geoch. 5, 657–668.

    Article  Google Scholar 

  • Malone, E. J. (1964) Deposition evolution of the Bowen Basin: J. Geol. Soc. Aust. 11, 263–282.

    Article  Google Scholar 

  • Olgers, F. (1969a) Clermont, Queensland, 1:250,000 geological series-explanatory notes: Bur. Miner. Resour. Geol. Geophys. Aust. 17 pp.

    Google Scholar 

  • Olgers, F. (1969b) Emerald, Queensland, 1:250,000 geological series-explanatory notes. Bur. Miner. Resour. Geol. Geophys. Aust. 17 pp.

    Google Scholar 

  • Osman, A. M. (1971) The Blair Athol Coalfield: in Proceedings of the Second Bowen Basin Symposium, A. Davis, ed., Rep. Geol. Sur. Qld. 62, 99–111.

    Google Scholar 

  • Osman, A. M. and Wilson, R. G. (1975) Blair Athol Coal-field: Aust. Ins. Min. Metall. Monograph 6, 376–380.

    Google Scholar 

  • Preston, K. B. (1985) The Blair Athol Coal Measures: in Bowen Basin Coal Symposium, Geol. Soc. Aust. 17, 59–64.

    Google Scholar 

  • Reid, J. H. (1936) Drilling at Miclere, Queensland: Qld. Govt. Min. J. 37: 94–95.

    Google Scholar 

  • Savin, S. M. and Epstein, S. (1970) The oxygen and hydrogen isotope geochemistry of clay minerals: Geochim. Cosmochim. Acta 34, 25–42.

    Article  Google Scholar 

  • Sheppard, S. M. F., Neilsen, R. L., and Taylor Jr., H. P. (1969) Oxygen and hydrogen isotope ratios of clay min-erals from prophyry copper deposits: Econ. Geol. 64, 755–777.

    Article  Google Scholar 

  • Smith, A. G., Hurley, A. M., and Briden, J. G. (1981) Phanerozoic Palaeocontinental World Maps: Cambridge University Press, 102 pp.

    Google Scholar 

  • Taylor Jr., H. P. (1974) The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition: Econ. Geol. 69, 843–883.

    Article  Google Scholar 

  • Taylor Jr., H. P. (1979) Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits: in Geochemistry of Hydrothermal Ore Deposits, 2nd ed. H. L. Barnes ed., John Wiley & Sons, New York, 236–272.

    Google Scholar 

  • Veevers, J. J. (1984) Phanerozoic Earth History of Australia: Clarendon Press, Oxford, 418 pp.

    Google Scholar 

  • Zhou T. (1992) Geochemistry and genesis of the Black Ridge gold deposit, Clermont, central Queensland: Ph.D. thesis, Department of Geology and Mineralogy, University of Queensland, 205 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, T., Dobos, S.K. Stable Isotope Geochemistry of Kaolinite from the “White Section,” Black Ridge, Clermont, Central Queensland: Implications For The Age And Origin of the “White Section”. Clays Clay Miner. 42, 269–275 (1994). https://doi.org/10.1346/CCMN.1994.0420305

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1994.0420305

Key Words

Navigation