Skip to main content
Log in

The Use of Color to Quantify the Effects of pH and Temperature on the Crystallization Kinetics of Goethite under Highly Alkaline Conditions

  • Published:
Clays and Clay Minerals

Abstract

The crystallization kinetics of goethite were studied colorimetrically under highly alkaline conditions (pH 10.1–12.2) at temperatures from 40° to 85°C. Color changes during crystallization from fresh precipitates, plotted on a*-b* colorimetric diagrams, were used to discriminate between pure goethite and mixtures of goethite and hematite. Only the b* value increased as goethite crystallization proceeded, and even a minor increase in the a* value revealed the existence of hematite. The rate of goethite crystallization, estimated from the b* value, could be modeled by a pseudo-first-order rate law. This rate depended both on pH and on temperature. Apparent activation energies for the reactions of 56.1 kJ/mol at pH 11.7 and 48.2 kJ/mol at pH 12.2 were estimated from Arrhenius plots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barron, V. and Torrent, J. (1984) Influence of aluminum substitution on the color of synthetic hematites: Clays & Clay Minerals 32, 157–158.

    Article  Google Scholar 

  • Combes, J. M., Manceau, A., Calas, G., and Bottero, Y. (1990) Formation of ferric oxides from aqueous solutions: A polyhedral approach by X-ray absorption spectroscopy: II. Hematite formation from ferric gels: Geochim. Cosmoshim. Acta 54, 1083–1091.

    Article  Google Scholar 

  • Cornell, R. M. and Giovanoli, R. (1985) Effect of solution conditions on the proportion and morphology of goethite formed from ferrihydrite: Clays & Clay Minerals 33, 424–432.

    Article  Google Scholar 

  • Cornell, R. M., Giovanoli, R., and Schneider, W. (1989) Review of the hydrolysis of iron (III) and the crystallization of amorphous iron (III) hydroxide hydrate: J. Chem. Tech. Biotechnol. 46, 115–134.

    Article  Google Scholar 

  • Feitknecht, W. and Michaelis, W. (1962) Uber die hydrolyse von Eisen (III) perchlorat-Losungen: Helv. Chim. Acta 45, 212–224.

    Article  Google Scholar 

  • Hunt, R. W. G. (1980) Color terms, symbols, and their usage: in Optical Radiation Measurement, F. Grum and C. J. Bartleson, eds., Academic Press, New York, 11–31.

    Google Scholar 

  • Johnston, J. H. and Lewis, D. G. (1983) A detailed study of the transformation of ferrihydrite to hematite in aqueous medium at 95°C: Geochim. Cosmochim. Acta 47, 1823–1831.

    Article  Google Scholar 

  • Kosmas, C. S., Franzmeier, D. P., and Schulze, D. G. (1986) Relationship among derivative spectroscopy, color, crystalline dimensions, and Al substitution of synthetic goethites and hematites: Clays & Clay Minerals 347, 625–634.

    Article  Google Scholar 

  • Lasaga, A. C. (1981) Rate laws of chemical reactions: in Reviews in Mineralogy 8, Kinetics of Geochemical Process, A. C. Lasaga and R. J. Kirkpatrick, eds., Mineralogical Society of America, Washington, D.C., 1–68.

    Chapter  Google Scholar 

  • Lewis, D. G. and Schwertmann, U. (1980) The effect of [OH] on the goethite produced from ferrihydrite under alkaline conditions: J. Colloid Interface Sci. 78, 543–553.

    Article  Google Scholar 

  • Misawa, T., Hashimoto, K., and Shimodaira, S. (1974) The mechanism of formation of iron oxide and oxyhydroxides in aqueous solutions at room temperature: Con. Sci. 14, 131–149.

    Google Scholar 

  • Munsell Book of Color, 2.5R-10G (1976) Munsell Color Macbeth Division of Kollmorgen Corporation, Baltimore, Maryland.

    Google Scholar 

  • Nagano, T. and Nakashima, S. (1989) Study of colors and degree of weathering of granitic rocks by visible diffuse reflectance spectroscopy: Geochem. J. 23, 75–83.

    Article  Google Scholar 

  • Nagano, T., Nakashima, S., Nakayama, S., Osada, K., and Senoo, M. (1992) Color variations associated with rapid formation of goethite from proto-ferrihydrite at pH13 and 40°C: Clays & Clay Minerals 40, 600–607.

    Article  Google Scholar 

  • Nagao, S. and Nakashima, S. (1991) A convenient method of color measurement of marine sediment by chromameter: Geochem. J. 25, 187–197.

    Article  Google Scholar 

  • Nakashima, S., Miyagi, I., Nakata, E., Sasaki, H., Nittono, S., Hirano, T., Sato, T., and Hayashi, H. (1992) Color measurement of some natural and synthetic minerals-I: Rep. Res. Inst. Natural Resources, Mining College, Akita Univ. 57, 57–76.

    Google Scholar 

  • Schott, J. and Petit, J. C. (1987) New evidence for the mechanisms of dissolution of silicate minerals: in Aquatic Surface Chemistry, W. Stumm, ed., Wiley-Interscience, New York, 293–315.

    Google Scholar 

  • Schwertmann, U. and Cornell, R. M. (1991) Iron Oxides in the Laboratory: Verlag Chemie VCH, Weinheim, Germany, 101–110.

    Google Scholar 

  • Schwertmann, U. and Fischer, W. R. (1966) Zur Bildung von α-FeOOH und α-Fe2O3 aus amorphous Eisen(III)-hy-droxid. III: Z. Anorg. Allg. Chem. 346, 137–142.

    Article  Google Scholar 

  • Schwertmann, U. and Murad, E. (1983) Effect of pH on the formation of goethite and hematite from ferrihydrite: Clays & Clay Minerals 31, 277–284.

    Article  Google Scholar 

  • Stumm, W. and Morgan, J. J. (1981) Precipitation and dissolution: in Aquatic Chemistry, 2nd ed., Wiley-Interscience, New York, 230–322.

    Google Scholar 

  • Sugiyama, M. (1986) Chroma Meters: Minolta Techno Report. Minolta Camera Co., Ltd., Osaka.

    Google Scholar 

  • Wolska, E. (1981) The structure of hydrohematite: Z. Kristallogr. 154, 69–75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagano, T., Nakashima, S., Nakayama, S. et al. The Use of Color to Quantify the Effects of pH and Temperature on the Crystallization Kinetics of Goethite under Highly Alkaline Conditions. Clays Clay Miner. 42, 226–234 (1994). https://doi.org/10.1346/CCMN.1994.0420213

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1994.0420213

Key Words

Navigation