Skip to main content
Log in

Dioctahedral Tosudite in Hydrothermally Altered Pliocene Rhyolitic Tuff, Neutla, Mexico

  • Published:
Clays and Clay Minerals

Abstract

Dioctahedral tosudite, a regular interstratification of dioctahedral chlorite-dioctahedral smectite, occurs associated with kaolin in the hydrothermal area of Delgado, Neutla, Mexico. Its composition corresponds to the formula:

$$\left( {S{I_{13.77}}A{L_{2.23}}} \right)A{L_8}{O_{40}}{\left( {OH} \right)_8} \cdot C{A_{0.39}}N{A_{0.03}}{K_{1.06}} \cdot \left( {A{L_{3.79}}F{E^{ + 3}}_{0.09}F{E^{ + 2}}_{0.06}M{G_{0.26}}} \right){\left( {OH} \right)_{12}}.$$

It forms as thin irregular flakes up to 5 µm in size. Adsorbed and cation hydration interlayer H2O is lost at 81°C and 184°C, dehydroxylation is intense at 496°C and weak at 656°C, with recrystallization at 970°C and 989°C. Infrared analysis shows OH-stretching at 3605 cm2−1 assigned to the Al-OH-Al group and at 3628, 3500, and 3365 cm2−1. Also, OH-bending occurs at 822 cm2−1, deformation of the H2O molecule at 1630 cm2−1, Si-O stretching at 1020 cm2−1, and bending at 482 cm2−1, displaced by Al substitution and increase of the Si-O distance. The characteristic basal spacing of 29.49 Å for the air-dry mineral is changed to 31.32 Å when solvated and to 23.23 Å upon heating; d060 = 1.496 Å. The interstratification is a regular 1:1 dioctahedral chlorite-dioctahedral smectite, R = 1, with coefficient of variability 0.73% for the air-dried mineral and 0.76% for the solvated one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anceau, A. (1992) Sudoite in some Visean (Lower Carboniferous) K-bentonites from Belgium: Clay Miner. 27, 283–292.

    Article  Google Scholar 

  • Bailey, S. W. (1982) Nomenclature for regular interstratifications: Amer. Mineral. 67, 394–398.

    Google Scholar 

  • Bailey, S. W. (1988) Chlorites: Structure and crystal chemistry: in Hydrous Phyllosilicates, S. W. Bailey and P. H. Ribbe, eds., Reviews in Mineralogy, Mineralogical Society of America, Washington, D.C., 347–398.

    Chapter  Google Scholar 

  • Bailey, S. W. and Brown, G. E. (1962) Chlorite polytypism: I. Regular and semi-random one-layer structures: Amer. Mineral. 47, 819–850.

    Google Scholar 

  • Bailey, S. W. and Lister, J. S. (1989) Structures, compositions, and X-ray diffraction identification of dioctahedral chlorites: Clays & Clay Minerals 37, 193–202.

    Article  Google Scholar 

  • Bailey, S. W. and Tyler, S. A. (1960) Clay minerals associated with the Lake Superior iron ores: Econ. Geol. 55, 150–175.

    Article  Google Scholar 

  • Bergaya, F., Brigati, M. F., and Fripiat, J. J. (1985) Contribution of infrared spectroscopy to the study of corrensite: Clays & Clay Minerals 33, 458–462.

    Article  Google Scholar 

  • Bettison, L. A. and Schiffman, P. (1988) Compositional and structural variations of phyllosilicates from the Point Sal ophiolite, California: Amer. Mineral. 73, 62–76.

    Google Scholar 

  • Brigatti, M. F. and Poppi, L. (1984) Crystal chemistry of corrensite: A review: Clays & Clay Minerals 32, 391–399.

    Article  Google Scholar 

  • Brown, G., Bourguignon, P., and Thorez, J. (1975) A lithium-bearing aluminium regular mixed layer montmorillonite-chlorite from Huy, Belgium: Clay Miner. 10, 135–144.

    Article  Google Scholar 

  • Brusewitz, A. M. (1986) Chemical and physical properties of Paleozoic potassium bentonites from Knneculle, Sweden: Clays & Clay Minerals 34, 442–454.

    Article  Google Scholar 

  • Cheng-Yi, L. and Bailey, S. W. (1985) Structural data for sudoite: Clays & Clay Minerals 33, 410–414.

    Article  Google Scholar 

  • Comision de Estudios del Territorio Nacional (1973) Carta Geologica Celaya F-14-C-64, Escala 1:50000: Secretaria de la Presidencia, Mexico, 1 p.

    Google Scholar 

  • Consejo de Recursos Minerales (1982) Hojas restituidas del area de Delgado, Guanajuato: Consejo de Recursos Minerales, Mexico, 1 p.

    Google Scholar 

  • Drits, V. A. and Lazarenko, E. K. (1967) The structural and mineralogical character of donbassites: Mineralog. Sbormik 21, 40–48 (in Russian).

    Google Scholar 

  • Eberl, D. D. (1978a) The reaction of montmorillonite to mixed-layer clays: Geochim. Cosmochim. Acta 42, 1–7.

    Article  Google Scholar 

  • Eberl, Dennis D. (1978b) Reaction series for dioctahedral smectites: Clays & Clay Minerals 26, 327–340.

    Article  Google Scholar 

  • Eggleton, R. A. and Bailey, S. W. (1967) Structural aspects of dioctahedral chlorite: Amer. Mineral. 52, 673–689.

    Google Scholar 

  • Farmer, V. C. (1974) The Infrared Spectra of Minerals: Mineralogical Society, London, 539 pp.

    Book  Google Scholar 

  • Frank-Kamenetsky, V. A., Logvinenko, N. V., and Drits, V. A. (1965) Tosudite—A new mineral forming the mixed layer phase in alushtite: Proc. Int. Clay Conf. Stockholm II, 181–186.

    Google Scholar 

  • Fransolet, A. M. and Bourguignon, P. (1975) Di/trioctahedral chlorite in quartz veins from the Ardenne, Belgium: Can. Mineral. 16, 365–373.

    Google Scholar 

  • Fripiat, J. J., Rouxhet, P., and Jacobs, H. (1965) Proton delocalization in micas: Amer. Mineral. 50, 1937–1958.

    Google Scholar 

  • Furbish, W. J. (1975) Corrensite of deuteric origin: Amer. Mineral. 60, 928–930.

    Google Scholar 

  • Grim, Ralph (1962) Applied Clay Mineralogy: McGraw Hill, New York, p. 93.

    Google Scholar 

  • Hayashi, H. and Oinuma, K. (1967) Si-O absorption band near 1000 cm2−1 and OH-absorption bands of chlorite: Amer. Mineral. 52, 1206–1210.

    Google Scholar 

  • Howard, J. J. and Roy, D. M. (1985) Development of layer charge and kinetics of experimental smectite alteration: Clays & Clay Minerals 33, 81–88.

    Article  Google Scholar 

  • Imai, N. and Watanabe, K. (1972) Tosudite-bearing clay associated with fluorspar deposits of the Igashima mine, Niagata Prefecture, northeastern Japan: Mining Geol. 22, 43–66.

    Google Scholar 

  • Inoue, A. (1983) K-fixation by clay minerals during hydrothermal treatment: Clays & Clay Minerals 31, 81–91.

    Article  Google Scholar 

  • Kopp, O. C. and Fallis, S. M. (1974) Corrensite in the Wellington Formation, Lyons, Kansas: Amer. Mineral. 59, 623–624.

    Google Scholar 

  • Kübler, B. (1973) La corrensite, indicateur possible de millieux de sédimentation et du degré de transformation d’un sédiment: Bull. Centre Oech. Pau SNAP 7, 543–556.

    Google Scholar 

  • Ledezma-Guerrero, O. (1960) Bosquejo Geologico de la Zona de Neutla, Guanajuato: Tesis, Facultad de Ingenieria, UNAM, 58 pp.

    Google Scholar 

  • MacEwan, D. M. C., Ruiz-Amil, A., and Brown, G. (1961) Interstratifled clay minerals: in The X-Ray Identification and Crystal Structures of Clay Minerals, G. Brown, ed., Mineralogical Society, London, 393–445.

    Google Scholar 

  • Merino, E., Harvey C., and Murray, H. H. (1989) Aqueous chemical control of the tetrahedral aluminum content of quartz, halloysite, and other low-temperature silicates: Clays & Clay Minerals 37, 135–142.

    Article  Google Scholar 

  • Meunier, A., Proust, D., and Beaufort, D. (1992) Heterogeneous reactions of dioctahedral smectites in illite-smectite and kaolinite-smectite mixed-layers: Application to clay materials for engineered barriers: Appl. Geochem. Suppl. Issue 1, 143–150.

    Article  Google Scholar 

  • Morrison, S. J. and Parry, W. T. (1986) Dioctahedral corrensite from Permian Red Beds, Lisbon Valley, Utah: Clays & Clay Minerals 34, 613–624.

    Article  Google Scholar 

  • Nishiyama, T., Shimosa, S., Shimosaka, K., and Kanaoka, S. (1975) Lithium-bearing tosudite: Clays & Clay Minerals 23, 337–342.

    Article  Google Scholar 

  • Pacquet, A. (1968) Analcime et argiles diagénétiques dans les formations sédimentaires de la région d’Agades (Republic du Niger): Mem. Serv. Carte Geol. Als.-Lorr. 27, 221 pp.

  • Pollastro, R. M. (1985) Mineralogical and morphological evidence for the formation of illite at the expense of illite/smectite: Clays & Clay Minerals 33, 265–274.

    Article  Google Scholar 

  • Povarennykh, A. S. (1978) The use of infrared spectra for the determination of minerals: Amer. Mineral. 63, 956–959.

    Google Scholar 

  • Proust, D., Lechelle, J., Lajudie, A., and Meunier, A. (1990) Hydrothermal reactivity of mixed-layer kaolinite/smectite: experimental transformation of high-charge to low-charge smectite: Clays & Clay Minerals 38, 415–425.

    Article  Google Scholar 

  • Reyes-Serna, V., Acosta, C., Martinez, J. J., and Nava, J. (1959) Reconocimiento geologico de la zona alunitica de Romero, Guanajuato: Mineria y Metalurgia 9, 93–123.

    Google Scholar 

  • Reynolds, R. C. (1988) Mixed-layer chlorite minerals: in Hydrous Phyllosilicates, S. W. Bailey and P. H. Ribbe, eds., Reviews in Mineralogy, Mineralogical Society of America, 601–629.

    Chapter  Google Scholar 

  • Serratosa, J. M. and Viñas, J. M. (1964) Infrared investigation of the OH bands in chlorites: Nature 202, 999.

    Article  Google Scholar 

  • Shimoda, S. (1969) New data for tosudite: Clays & Clay Minerals 17, 179–184.

    Article  Google Scholar 

  • Shimoda, S. (1975) X-ray and infrared studies of sudoite and tosudite: Contributions to Clay Mineralogy in Honor of Prof. Toshio Sudo, 92–96.

    Google Scholar 

  • Shirozu, H. (1980) Cation distribution, sheet thickness, and O-OH space in trioctahedral chlorites: An X-ray and infrared study: Mineral. J. (Japan) 10, 14–34.

    Article  Google Scholar 

  • Shirozu, H. and Ishida, K. (1982) Infrared study of some 7A and 14A layer silicates by deuteration: Mineral. J. (Japan) 11, 161–171.

    Article  Google Scholar 

  • Środoń, Jan (1980) Synthesis of mixed-layer kaolinite/smectite: Clays & Clay Minerals 28, 419–424.

    Article  Google Scholar 

  • Środoń, J., Morgan, D. J., Eslinger, E. V., Eberl, D. D., and Karlinger, M. R. (1986) Chemistry of illite/smectite and end-member illite: Clays & Clay Minerals 34, 368–378.

    Article  Google Scholar 

  • Stubican, V. and Roy, R. (1961) Isomorphous substitution and infrared spectra of the layer lattice silicates: Amer. Mineral. 46, 32–51.

    Google Scholar 

  • Sudo, T. and Hayashi, H. (1956) Types of mixed-layer minerals from Japan: Clays & Clay Minerals 4, 389–412.

    Article  Google Scholar 

  • Sudo, T. and Kodama, H. (1957) An aluminous mixed-layer mineral of montmorillonite-chlorite: Z. Kristallogr. 109, 379–387.

    Article  Google Scholar 

  • Sudo, T., Takahashi, H., and Matsui, H. (1954) Long spacing of 30Å from fireclay: Nature 173, 161.

    Article  Google Scholar 

  • Tuddenham, W. M. and Lyon, R. J. P. (1959) Relation of infrared spectra and chemical analysis for some chlorites and related minerals. Anal. Chem. 31, 377–380.

    Article  Google Scholar 

  • Velde, B. and Brusewitz, A. M. (1982) Metasomatic and non-metasomatic low-grade metamorphism of Ordovician meta-bentonites in Sweden: Geochim. Cosmochim. Acta 46, 447–452.

    Article  Google Scholar 

  • Vila, E. and Ruiz-Amil, A. (1988) Computer program for analyzing interstratifled structures by Fourier transform methods: Powder Diffraction 3, 7–11.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Pablo-Galan, L., Chávez-García, M.L. Dioctahedral Tosudite in Hydrothermally Altered Pliocene Rhyolitic Tuff, Neutla, Mexico. Clays Clay Miner. 42, 114–122 (1994). https://doi.org/10.1346/CCMN.1994.0420202

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1994.0420202

Key Words

Navigation