Skip to main content
Log in

Mineral Metastability in the System Al2O3-SiO2-H2O: A Reply

  • Note
  • Published:
Clays and Clay Minerals

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Anovitz, L. M., Perkins, D., and Essene, E. J. (1991) Meta-stability in near-surface rocks of minerals in the system Al2O3-SiO2-H2O: Clays & Clay Minerals 39, 225–233.

    Article  Google Scholar 

  • Apps, J. A., Neil, J. M., and Jun, C.-H. (1989) Thermo-chemical properties of gibbsite, bayerite, boehmite, diaspore and the aluminate ion between 0 and 350°C: NUREG/CR 5271, Lawrence Berkeley Laboratory LBL-21482, 1–97.

    Google Scholar 

  • Bardossy, G. (1982) Karst Bauxites: Developments in Economic Geology, Vol. 15, Elsevier, Amsterdam, 441 pp.

  • Bardossy, G. and Aleva, G. J. J. (1990) Lateritic Bauxites: Developments in Economic Geology, Vol. 27, Elsevier, Amsterdam, 624 pp.

  • Chernov, A. A. and Lewis, J. (1967) Computer model of crystallization of binary systems: Kinetic phase transitions: J. Phys. Chem. Solids 28, 2185–2198.

    Article  Google Scholar 

  • Chesworth, W. (1972) The stability of gibbsite and boehmite at the surface of the earth: Clays & Clay Minerals 20, 369–374.

    Article  Google Scholar 

  • Chesworth, W. (1975) Soil minerals in the system Al2O3-SiO2-H2O: Phase equilibrium model: Clays & Clay Minerals 23, 55–60.

    Article  Google Scholar 

  • Chesworth, W. (1980) The haplosoil system: Am. J. Sci. 280, 969–985.

    Article  Google Scholar 

  • Chesworth, W. (1994) Mineral metastability in the system Al2O3-SiO2-H2O: A discussion: Clays & Clay Minerals 42, 98–101.

    Article  Google Scholar 

  • Day, H. W. (1976) A working model of some equilibria in the system alumina-silica-water: Amer. J. Sci. 276, 1254–1284.

    Article  Google Scholar 

  • Haas, J. L., Robinson, G. R., and Hemingway, B. R. (1981) Thermodynamic tabulations for selected phases in the system CaO-Al2O3-SiO2-H2O at 101.325 kPa(1 atm) between 273.15 and 1800 K: J. Phys. Chem. Ref. Data 10, 575–669.

    Article  Google Scholar 

  • Helgeson, H. C., Delaney, J. M., Nesbitt, H. W., and Bird, D. K. (1978) Summary and critique of the thermodynamic properties of rock-forming minerals: Am. J. Sci. 278A, 1–229.

    Google Scholar 

  • Hemingway, B. S. (1982) Gibbs free energies of formation for bayerite, nordstrandite, Al(OH)2+ and Al(OH)2+, aluminum mobility and the formation of bauxites and laterites: in Adv. Phys. Geochem. 2, S. K. Saxena, ed., Springer-Verlag, New York, 285–314.

    Google Scholar 

  • Hemingway, B. S., Robie, R. A., and Kittrick, J. A. (1978) Revised values of the Gibbs free energy of formation of [Al(OH)4−]aq, diaspore, boehmite and bayerite at 298 K and 1 bar, the thermodynamics of kaolinite to 800°C and 1 bar, and the heat of solution of several gibbsite samples: Geochim. Cosmochim. Acta 42, 1533–1543.

    Article  Google Scholar 

  • Hemingway, B. S., Robie, R. A., and Apps, J. A. (1991) Revised values for the thermodynamic properties of boehmite, AIO(OH), and related species and phases in the system Al-H-O: Am. Mineral. 76, 445–457.

    Google Scholar 

  • Kittrick, J. A. (1969) Soil minerals in the Al2O3-SiO2-H2O system and a theory of their formation: Clays & Clay Minerals 17, 57–167.

    Article  Google Scholar 

  • Perkins, D., Essene, E. J., Westrum, E. III, and Wall, V. J. (1979) New thermodynamic data for diaspore and their application to the system Al2O3-SiO2-H2O: Amer. Mineral. 64, 1080–1090.

    Google Scholar 

  • Robie, R. A., Hemingway, B. S., and Fisher, J. R. (1978) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures: U.S. Geol. Surv. Bull. 14S2, 1–456.

    Google Scholar 

  • Robinson, G. R., Haas, J. L., Jr., Schafer, C. M., and Haselton, H. T. (1982) Thermodynamic and thermophysical properties of selected phases in the MgO-SiO2-H2O-CO2, CaO-Al2O3-SiO2-H2O-CO2 and Fe-FeO-Fe2O3-SiO2 chemical systems, with special emphasis on the properties of basalts and their mineral components: U. S. Geol. Surv. Open-File Rept. 83–79, 1–429.

    Google Scholar 

  • Verdes, G., Gout, R., and Castet, S. (1992) Thermodynamic properties of the aluminate ion and of bayerite, boehmite, diaspore and gibbsite: Eur. J. Mineral. 4, 767–792.

    Article  Google Scholar 

  • Wenk, H.-R., Barber, D. J., and Reeder, R. J. (1983) Microstructures in carbonates: in Carbonates: Mineralogy and Chemistry, R. J. Reeder, ed., Reviews in Mineralogy 11, 301–368.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution No. XXX from the Mineralogical Laboratory, University of Michigan, Ann Arbor, Michigan 48109.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Essene, E.J., Anovitz, L.M. & Perkins, D. Mineral Metastability in the System Al2O3-SiO2-H2O: A Reply. Clays Clay Miner. 42, 102–105 (1994). https://doi.org/10.1346/CCMN.1994.0420114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1994.0420114

Key Words

Navigation