Skip to main content
Log in

Intercalation of Tetraalkylammonium Cations into Smectites and Its Application to Internal Surface Area Measurements

  • Published:
Clays and Clay Minerals

Abstract

Monolayer to bilayer (MTB) and bilayer to pseudotrimolecular (BTP) transitions were observed for smectites exchanged with symmetrical tetraalkylammonium cations of increasing sizes: +NR4, where R = (CH2)nCH3, with 0 ≤ n ≤ 7. In the case of SWy-1, SHCa-1 and SWa-1, the variation in layer spacing observed from intercalation of tetramethylammonium up to tetraoctylammonium cations showed a behavior characteristic of smectites with homogeneously distributed interlayer cations. In the case of STx-1, the change in interlayer spacing with the increase of the alkyl chain length was characteristic of a very high charge heterogeneity. Higher charge smectites (SAz-1 and SCa-3, CEC > 1.20 mmol/g) were found to have decreasing cation exchange with increasing cation size, resulting in a "leveling off’ of the interlayer spacing toward larger cations. The MTB and BTP transitions were used to determine the internal surface area of various smectites. The proposed method was found to be a quicker and simpler alternative to the polar liquid sorption method for this measurement, but was ineffective for high-charge smectites (CEC > 1.20 mmol/g).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrer, R. M. and MacLeod, D. M. (1955) Activation of montmorillonite by ion exchange and sorption complexes of tetra-alkyl ammonium montmorillonite: Trans. Farad. Soc. 51, 1290–1300.

    Article  Google Scholar 

  • Barrer, R. M. and Reay, J. S. S. (1957) Sorption and intercalation by methyl-ammonium montmorillonite: Trans. Farad. Soc. 53, 1253–1261.

    Article  Google Scholar 

  • Barrer, R. M. and Hampton, M. G. (1957) Gas chromatography and mixtures isotherms in alkyl ammonium bentonites: Trans. Farad. Soc. 53, 1462–1475.

    Article  Google Scholar 

  • Barrer, R. M. and Perry, G. S. (1961) Sorption of mixtures, and selectivity in alkylammonium montmorillonites. Parts I & II: J. Chem. Soc., 842–849 and 850–858.

    Google Scholar 

  • Barrer, R. M. and Brummer, K. (1963) Relations between partial ion exchange and interlamellar sorption in alkylammonium montmorillonites: Trans. Farad. Soc. 59, 959–968.

    Article  Google Scholar 

  • Barrer, R. M. and Millington, A. D. (1967) Sorption and intracrystalline porosity in organo-clays: J. Colloid Interface Sci. 25, 359–372.

    Article  Google Scholar 

  • Barrer, R. M. (1986) Expanded clay minerals: A major class of molecular sieves: J. Inclusion Phen. 4, 109–119.

    Article  Google Scholar 

  • Barrer, R. M. (1989a) Clay minerals as selective and shape-selective sorbents: Pure & Appl. Chem. 61, 1903–1912.

    Article  Google Scholar 

  • Barrer, R. M. (1989b) Shape-selective sorbents based on clay minerals: A review: Clays & Clay Minerals 37, 385–395.

    Article  Google Scholar 

  • Byrne, P. J. S. (1954) Some observations on montmorillonite-organic complexes: Clays & Clay Minerals 2, 241–253.

    Article  Google Scholar 

  • Carter, D. L., Heilman, M. D., and Gonzalez, C. L. (1965) Ethylene glycol monoethyl ether for determining surface area of silicate minerals: Soil Sci. 100, 356–360.

    Article  Google Scholar 

  • Chen, C. C., Turner, F. T., and Dixon, J. B. (1989) Ammonium fixation by high-charge smectite in selected Texas Gulf Coast soils: Soil Sci. Soc. Am. J. 53, 1035–1040.

    Article  Google Scholar 

  • Clementz, D. M. and Mortland, M. M. (1974) Properties of reduced charge montmorillonite: Tetra-alkylammonium ion exchange forms: Clays & Clay Minerals 22, 223–229.

    Article  Google Scholar 

  • Diamond, S. and Kinter, E. B. (1958) Surface area of clay minerals as derived from measurements of glycerol retention: Clays & Clay Minerals 5, 334–347.

    Article  Google Scholar 

  • Dyal, R. S. and Hendricks, S. B. (1950) Total surface of clays in polar liquids as a characteristic index: Soil Sci. 69, 421–432.

    Article  Google Scholar 

  • Favre, H. and Lagaly, G. (1991) Organo-bentonites with quaternary alkylammonium ions: Clay Miner. 26, 19–32.

    Article  Google Scholar 

  • Ghabru, S. K., Mermut, A. R., and St. Arnaud, R. J. (1989) Layer-charge and cation-exchange characteristics of vermiculite (weathered biotite) isolated from a gray luvisol in northeastern Saskatchewan: Clays & Clay Minerals 37, 164–172.

    Article  Google Scholar 

  • Häusler, W. and Stanjek, H. (1988) A refined procedure for the determination of the layer charge with alkylammonium ions: Clay Miner. 23, 333–337.

    Article  Google Scholar 

  • Jonas, E. C. and Roberson, H. E. (1966) Structural charge density as indicated by montmorillonite hydration: Clays & Clay Minerals 13, 223–230.

    Article  Google Scholar 

  • Lagaly, G. and Weiss, A. (1975) The layer charge of smectitic layer silicates: Proc. Int. Clay Conf. Mexico: Applied Publishing Ltd., Willamette, Ill., 157–172.

    Google Scholar 

  • Lagaly, G., Fernandez Gonzalez, M., and Weiss, A. (1976) Problems in layer-charge determination of montmorillonites: Clay Miner. 11, 173–187.

    Article  Google Scholar 

  • Lagaly, G. (1981) Characterisation of clays by organic compounds: Clay Miner. 16, 1–21.

    Article  Google Scholar 

  • Lagaly, G. (1982) Layer charge heterogeneity in vermiculites: Clays & Clay Minerals 30, 215–222.

    Article  Google Scholar 

  • Laird, D. A., Scott, A. D., and Fenton, T. E. (1987) Interpretation of alkylammonium characterization of soil clays: Soil Sci. Soc. Am. J. 51, 1659–1663.

    Article  Google Scholar 

  • Laird, D. A., Fenton, T. E., and Scott, A. D. (1988) Layer charge of smectites in an Argiaboll-Argiaquoll sequence: Soil Sci. Soc. Am. J. 52, 463–467.

    Article  Google Scholar 

  • Laird, D. A., Scott, A. D., and Fenton, T. E. (1989) Evaluation of the alkylammonium method of determining layer charge: Clays & Clay Minerals 37, 41–46.

    Article  Google Scholar 

  • Lao, H., Latieule, S., and Detellier, C. (1991) Molecular recognition in microporous organo-minerals. Shape-specific interactions of carbon dioxide in functionalized organo-montmorillonite microcavities: Chem. Mater. 3, 1009–1011.

    Article  Google Scholar 

  • Madsen, F. T. (1977) Surface area measurements of clay minerals by glycerol sorption on a thermobalance: Thermochimica Acta 21, 89–93.

    Article  Google Scholar 

  • Malla, P. B. and Douglas, L. A. (1987) Layer charge properties of smectites and vermiculites: Tetrahedral vs. octahedral: Soil Sci. Soc. Am. J. 51, 1362–1366.

    Article  Google Scholar 

  • McAtee, J. L. (1958a) Heterogeneity in montmorillonite: Clays & Clay Minerals 5, 279–288.

    Article  Google Scholar 

  • McAtee, J. L. (1958b) Random interstratification in organophilic bentonites: Clays & Clay Minerals 5, 308–317.

    Article  Google Scholar 

  • McAtee, J. L. (1962) Cation exchange of organic compounds on montmorillonite in organic media: Clays & Clay Minerals 9, 444–450.

    Article  Google Scholar 

  • McAtee, J. L. (1963) Organic cation exchange on montmorillonite as observed by ultraviolet analysis: Clays & Clay Minerals 10, 53–162.

    Google Scholar 

  • Mercier, L. (1991) Intercalation of tetraalkylammonium cations into smectites: Honours thesis, University of Ottawa, 55 pp.

    Google Scholar 

  • Olis, A. C., Malla, P. B., and Douglas, L. A. (1990) The rapid estimation of the layer charges of 2:1 expanding clays from a single alkylammonium ion expansion: Clay Miner. 25, 39–50.

    Article  Google Scholar 

  • Rüehlicke, G. and Kohler, E. E. (1981) A simplified procedure for determining layer charge by the n-alkylammonium method: Clay Miner. 16, 305–307.

    Article  Google Scholar 

  • Rüehlicke, G. and Niederbudde, E. A. (1985) Determination of layer-charge density of expandable 2:1 clay minerals in soils and loess sediments using the alkylammonium method: Clay Miner. 20, 291–300.

    Article  Google Scholar 

  • Stanjek, H. and Friedrich, R. (1986) The determination of layer charge by curve-fitting of Lorentz- and polarization-corrected X-ray diagrams: Clay Miner. 21, 183–190.

    Article  Google Scholar 

  • Stanjek, H., Niederbudde, E. A., and Häusler, W. (1992) Improved evaluation of layer charge of n-alkylammonium-treated fine soil clays by Lorentz- and polarization-correction and curve fitting: Clay Miner. 27, 3–19.

    Article  Google Scholar 

  • Stul, M. S. and Mortier, W. J. (1974) The heterogeneity of the charge density in montmorillonites: Clays & Clay Minerals 22, 391–396.

    Article  Google Scholar 

  • Tettenhorst, R. and Johns, W. D. (1966) Interstratification in montmorillonites: Clays & Clay Minerals 25, 85–93.

    Google Scholar 

  • Val Olphen, H. (1977) An Introduction to Clay Colloid Chemistry: Wiley Interscience, New York, 318 pp.

    Google Scholar 

  • Villemure, G. (1987) Photochemical applications of the intercalation of organic cations in clay minerals: Ph.D. thesis, University of Ottawa, 238 pp.

    Google Scholar 

  • Weiss, A., Becker, H. O., and Lagaly, G. (1969) Determination of charge density sequence in regular interstratified mica-type layer silicates by means of their n-alkylammonium derivatives: Proc. Int. Clay Conf. Tokyo 1, 67–72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mercier, L., Detellier, C. Intercalation of Tetraalkylammonium Cations into Smectites and Its Application to Internal Surface Area Measurements. Clays Clay Miner. 42, 71–76 (1994). https://doi.org/10.1346/CCMN.1994.0420109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1994.0420109

Key Words

Navigation