Skip to main content
Log in

Clay Minerals in the Macadams Sandstone, California: Implications for Substitution Of H3O+ and H2O and Metastability of Illite

  • Published:
Clays and Clay Minerals

Abstract

Clay minerals from the MacAdams Sandstone, Kettleman North Dome, California, have been studied by electron microscopy. The clay minerals fill pore space associated with fractured and brecciated clasts of K-feldspar. Curved packets of muscovite and kaolinite are caused by deformation of detrital muscovite that resulted in opening of fissures subsequently filled with dominant kaolinite and minor intergrown mixed-layer illite/smectite (I/S). Regions of authigenic R1 I/S (rectorite) with characteristic ~20 Å periodicity are intergrown with kaolinite in microfissures within K-feldspar or detrital muscovite. Clusters of small grains of muscovite with nearly ideal composition occur as stacks and intergrown with kaolinite and are tentatively inferred to be authigenic. Contrary to previous reports, no illite was found in these samples.

Electron microprobe analyses previously obtained on Kettleman Dome “illite” and subsequently used as a prime example of analyses of illite rich in excess interlayer water (H2O) and hydronium ion (H3O+) are shown to have been obtained on mixtures, and are not representative of the actual clay mineral compositions. Previous conclusions regarding significant H3O+ and H2O contents of illite are invalid because of inaccuracies inherent in bulk and EMPA analyses of illite, and do not affect arguments regarding the metastability of illite. Hydronium substitution should be favored via the reaction H2O + H+ = H3O+ only in highly acidic fluids. Ordinary illite forming in sedimentary environments with carbonates and iron oxides is unlikely to have significant H3O+ substituted for K+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, J. H. and Peacor, D. R. (1986) Transmission electron microscopic data for rectorite: Implications for the origin and structure of “fundamental particles”: Clays & Clay Minerals 34, 180–186.

    Article  Google Scholar 

  • Alpers, C. N. and Nordstrom, D. K. (1988) Solid solution properties and deuterium fractionation factors for hydronium-bearing jarosites from acid mine waters: Eos 69, 1480.

    Google Scholar 

  • Burley, S. D. (1984) Patterns of diagenesis in the Sherwood Sandstone Group (Triassic), United Kingdom: Clay Miner. 19, 403–440.

    Article  Google Scholar 

  • Essene, E. J. (1989) The current status of thermobarometry in metamorphic rocks: in Evolution of Metamorphic Belts, Geol. Soc. Spec. Pub. 43, J. S. Daly, R. A. Cliff, and B. W. D. Yardley, ed.., Geol. Soc, London, 1–44.

    Google Scholar 

  • Ireland, B. J., Curtis, C. D., and Whiteman, J. A. (1983) Compositional variation within some glauconites and illites and implications for their stability and origins: Sediment. 30, 769–786.

    Article  Google Scholar 

  • Jahren, J. S. and Aagaard, P. (1992) Diagenetic illite-chlorite assemblages in arenites. I. Chemical evolution: Clays & Clay Minerals 40, 540–546.

    Article  Google Scholar 

  • Jannas, R. R., Beane, R. E., Ahler, B. A., and Brosnahan, D. R. (1990) Gold and copper mineralization at the El Indio deposit, Chile: J. Geochem. Explor. 36, 233–266.

    Article  Google Scholar 

  • Jiang, W.-T., Nieto Garcia, F., and Peacor, D. R. (1992) Composition of diagenetic illite as defined by analytical electron microscope analyses: Implications for smectiteillite-muscovite transitions: Abstracts, 29th International Geological Congress, Kyoto 1992 1, p. 100.

    Google Scholar 

  • Jiang, W.-T., Essene, E. J., and Peacor, D. R. (1990a) Transmission electron microscopic study of coexisting pyrophyllite and muscovite: Direct evidence for the metastability of illite: Clays & Clay Minerals 38, 225–240.

    Article  Google Scholar 

  • Jiang, W.-T., Peacor, D. R., Merriman, R. J., and Roberts, B. (1990b) Transmission and analytical electron microscopic study of mixed-layer illite-smectite formed as an apparent replacement product of diagenetic illite: Clays & Clay Minerals 38, 449–468.

    Article  Google Scholar 

  • Juster, T. C., Brown, P. E., and Bailey, S. W. (1987) NH4-bearing illite in very low grade metamorphic rocks associated with coal, northeastern Pennsylvania: Amer. Mineral. 72, 555–565.

    Google Scholar 

  • Lanson, B. and Champion, D. (1991) The I/S-to-illite reaction in the late stage diagenesis: Amer. J. Sci. 291, 473–506.

    Article  Google Scholar 

  • Li, G., Peacor, D. R., Essene, E. J., Brosnahan, D. R., and Beane, R. E. (1992) Walthierite, Ba0.50.5A13(SO4)2(OH)6, and huangite, Cao0.505Al3(SO4)2(OH)6, two new minerals of the alunite group from the Coquimbo region, Chile: Amer. Mineral. 77, 1275–1284.

    Google Scholar 

  • Li, G., Peacor, D. R., Merriman, R. J., Roberts, B., and van der Pluijm, B. A. (1994) TEM and AEM constraints on the origin and significance of chlorite-mica stacks in slates: An example from Central Wales, U.K.: J. Struct. Geol. (in press).

    Google Scholar 

  • Lippmann, F. (1981) Stability diagrams involving clay minerals: in 8th Conference Clay Mineral Petrology, Teplice 1979, J. Konta, ed., Univ. Karlova, Praha, Czechoslovakia, 153–171.

    Google Scholar 

  • Lippmann, F. (1982) The thermodynamic status of clay minerals: in Proceedings of the 7 th International Clay Conference, Bologna, Pavia, 1981, H. van Olphen and F. Veniale, ed.., Elsevier, New York, 475–485.

    Google Scholar 

  • Loucks, R. R. (1991) The bound interlayer H2O content of potassic white micas: muscovite—hydromuscovite-hydro-pyrophyllite solutions: Amer. Mineral. 76, 1563–1579.

    Google Scholar 

  • Macchi, L., Curtis, C. D., Levison, A., Woodward, K., and Hughes, C. R. (1990) Chemistry, morphology, and distribution of illites from Morecambe gas field, Irish Sea, offshore United Kingdom: Bull. AAPG 74, 296–308.

    Google Scholar 

  • Merino, E. (1975a) Diagenesis in Tertiary sandstones from Kettleman North Dome, California. I. Diagenetic mineralogy: J. Sed. Pet. 45, 320–336.

    Google Scholar 

  • Merino, E. (1975b) Diagenesis in Tertiary sandstones from Kettleman North Dome, California. II. Interstitial solutions: Distribution of aqueous species at 100°C and chemical relation to the diagenetic mineralogy: Geochim. Cosmochim. Acta 39, 1629–1645.

    Article  Google Scholar 

  • Merino, E. and Ransom, B. (1982) Free energies of formation of illite solid solutions and their compositional dependence: Clays & Clay Minerals 30, 29–39.

    Article  Google Scholar 

  • Morad, S. (1990) Mica alteration reactions in Jurassic reservoir sandstones from the Haltenbanken area, offshore Norway: Clays & Clay Minerals 38, 584–590.

    Article  Google Scholar 

  • Norris, R. M. and Webb, R. W. (1990) Geology of California: 2nd ed., John Wiley & Sons, New York, 541 pp.

    Google Scholar 

  • Ohr, M., Halliday, A. N., and Peacor, D. R. (1991) Sr and Nd isotopic evidence for punctuated clay diagenesis, Texas Gulf Coast: Earth Planet. Sci. Lett. 105, 110–126.

    Article  Google Scholar 

  • Peacor, D. R. (1992) Diagenesis and low-grade metamorphism of shales and slates: in Reviews in Mineralogy 27, P. R. Buseck and P. H. Ribbe, ed.., Miner. Soc. Amer., Chelsea, 335–380.

    Google Scholar 

  • Primmer, T. J. and Shaw, H. F. (1987) Diagenesis in shales: Evidence from backscattered electron microscopy and electron microprobe analyses: Proceedings of the 8th International Clay Conference, Denver, 1985, L. G. Schultz, H. van Olphen, and F. A. Mumpton, ed.., The Clay Minerals Society, Bloomington, 135–143.

    Google Scholar 

  • Pye, K. and Krinsley, D. H. (1983) Inter-layered clay stacks in Jurassic shales: Nature 304, 618–620.

    Article  Google Scholar 

  • Reed, S. J. B. (1975) Electron Microprobe Analysis: Cambridge University Press, Cambridge, 400 pp.

    Google Scholar 

  • Van der Pluijm, B. A., Lee, J. H., and Peacor, D. R. (1988) Analytical electron microscopy and the problem of potassium diffusion: Clays & Clay Minerals 36, 498–504.

    Article  Google Scholar 

  • Van der Pluijm, B. A. and Kaars-Sijpesteijn, C. H. (1984) Chlorite-mica aggregates: Morphology, orientation, development and bearing on cleavage formation in very-low-grade- rocks: J. Struct. Geol. 6, 399–407.

    Article  Google Scholar 

  • Veblen, D. R., Guthrie, G. D., Jr., Livi, K. J. T., and Reynolds, R. C., Jr. (1990) High-resolution transmission electron microscopy and electron diffraction of mixed-layer illite/smectite: Experimental results: Clays & Clay Minerals 38, 1–13.

    Article  Google Scholar 

  • Warren, E. A. and Ransom, B. (1992) The influence of analytical error upon the interpretation of chemical variations in clay minerals: Clay Miner. 27, 193–209.

    Article  Google Scholar 

  • Weaver, C. E. and Pollard, L. D. (1973) The Chemistry of Clay Minerals: Elsevier, New York, 213 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution No. 496 from the Mineralogical Laboratory, Department of Geological Sciences.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, WT., Peacor, D.R. & Essene, E.J. Clay Minerals in the Macadams Sandstone, California: Implications for Substitution Of H3O+ and H2O and Metastability of Illite. Clays Clay Miner. 42, 35–45 (1994). https://doi.org/10.1346/CCMN.1994.0420105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1994.0420105

Key Words

Navigation