Skip to main content
Log in

Growth of Smectite from Leached Layer During Experimental Alteration of Albite

  • Published:
Clays and Clay Minerals

Abstract

Experimental alteration of albite in deionized-distilled water at 150° to 225°C for various times up to 30 days was performed to elucidate formation processes for alteration products of albite in aqueous solution. The alteration products were examined by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy (TEM), and energy dispersive X-ray analysis (EDX). The surface compositions of albite before and after alteration were investigated by X-ray photoelectron spectroscopy (XPS). TEM clearly showed that an amorphous leached layer was produced on the albite surface at the earliest alteration stage together with small amounts of allophane. The leached layer increased successively in thickness and tended to be detached from the albite surface as alteration proceeded. Noncrystalline fibers less than 0.5 µm in length appeared within the leached layer matrix and transformed into thin flaky smectite and small amounts of K-mica. The leached layer gave electron diffraction patterns with a diffuse halo, whereas the flaky smectite displayed rings at 4.51, 2.61, and 1.54 Å. EDX confirmed that the flaky smectite consisted mainly of Si and Al, and small amounts of Na. The smectite was formed in the stability field of Na-smectite for the system of Na2O-Al2O3-SiO2-H2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aagaard, P. and Helgeson, H. C. (1982) Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions. I. Theoretical considerations: Amer. J. Sci. 282, 237–285.

    Article  Google Scholar 

  • Althaus, E. and Tirtadinata, E. (1989) Dissolution of feldspar: The first step: in Water-Rock Interaction, D. L. Miles, ed., Balkema, Rotterdam, 15–17.

    Google Scholar 

  • Bailey, S. W. (1984) Micas: in Reviews in Mineralogy, Vol. 3, Mineralogical Society of America, Chelsea, Michigan, 584 pp.

  • Berner, R. A. (1978) Rate control of mineral dissolution under Earth surface conditions: Amer. J. Sci. 278, 1235–1252.

    Article  Google Scholar 

  • Berner, R. A. (1981) Kinetics of weathering and diagenesis: in Reviews in Mineralogy, Vol. 8, A. C. Lasaga and R. J. Kirkpatrick, ed.., The Mineralogical Society of America, Chelsea, Michigan, 111–134.

    Google Scholar 

  • Berner, R. A. and Holdren Jr., G. R. (1977) Mechanism of feldspar weathering: Some observational evidence: Geology 5, 369–372.

    Article  Google Scholar 

  • Blum, A. E. and Lasaga, A. C. (1988) Role of surface speciation in the low-temperature dissolution of minerals: Nature 331, 431–433.

    Article  Google Scholar 

  • Blum, A. E. and Lasaga, A. C. (1991) The role of surface speciation in the dissolution of albite: Geochim. Cosmochim. Acta 55, 2193–2201.

    Article  Google Scholar 

  • Busenberg, E. (1978) The products of the interaction of feldspar with aqueous solution at 25°C: Geochim. Cosmochim. Acta 42, 1679–1686.

    Article  Google Scholar 

  • Busenberg, E. and Clemency, C. V. (1976) The dissolution kinetics of feldspar at 25°C and 1 atm CO2 partial pressure: Geochim. Cosmochim. Acta 40, 41–49.

    Article  Google Scholar 

  • Casey, W. H., Westlich, H. R., and Arnold, G. W. (1988) Surface chemistry of labradorite feldspar reacted with aqueous solutions at pH = 2, 3 and 12: Geochim. Cosmochim. Acta 52, 2795–2807.

    Article  Google Scholar 

  • Casey, W. H., Westrich, H. R., Arnold, G. W., and Banfield, J. F. (1989a) The surface chemistry of dissolving labradorite feldspar: Geochim. Cosmochim. Acta 53, 821–832.

    Article  Google Scholar 

  • Casey, W. H., Westrich, H. R., Massis, T., Banfield, J. F., and Arnold, G. W. (1989b) The surface of laboradorite feldspar after acid hydrolysis: Chem. Geol. 78, 205–218.

    Article  Google Scholar 

  • Casey, W. H. and Bunker, B. (1990) Leaching of minerals and glass surfaces during dissolution: in Mineral- Water Interface Geochemistry, M. F. Hochella Jr. and A. F. White, ed.., Reviews in Mineralogy, Vol. 13, Mineralogical Society of America, New York, 397–426.

    Article  Google Scholar 

  • Casey, W. H., Westrich, H. R., and Holdren, G. R. (1991) Dissolution rates of plagioclase at pH = 2 and 3: Amer. Mineral. 76, 211–217.

    Google Scholar 

  • Chou, L. and Wollast, R. (1984) Study of the weathering of albite at room temperature and pressure with a fluidized bed reactor: Geochim. Cosmochim. Acta 48, 2205–2218.

    Article  Google Scholar 

  • Chou, L. and Wollast, R. (1985) Steady-state kinetics and dissolution mechanisms of albite: Amer. J. Sci. 285, 963–993.

    Article  Google Scholar 

  • Correns, C. W. (1940) Die Chemische Verwitterung der Silikate: Naturwissenschaften 28, 369–376.

    Article  Google Scholar 

  • Correns, C. W. (1961) The experimental chemical weathering of silicates: Clay Mineral. Bull. 4, 249–281.

    Article  Google Scholar 

  • Correns, C. W. (1963) Experiments on the decomposition of silicates and discussion of chemical weathering: Clays & Clay Minerals 10, 43–459.

    Google Scholar 

  • Correns, C. W. and von Engelhardt, W. (1938) Nene Untersuchungen über die Verwitterung des Kalifeldspates: Chemie der Erde 12, 1–22.

    Google Scholar 

  • Dibble Jr., W. E. and Tiller, W. A. (1981) Non-equilibrium water/rock interactions. I. Model for interface-controlled reactions: Geochim. Cosmochim. Acta 45, 79–92.

    Article  Google Scholar 

  • Eggleton, R. A. and Buseck, P. R. (1980) High resolution electron microscopy of feldspar weathering: Clays & Clay Minerals 28, 173–178.

    Article  Google Scholar 

  • Goossens, D. A., Philippaerts, J. G., Gijbels, R., Pijpers, A. P., van Tendeloo, S., and Althaus, E. (1989) A SIMS, XPS, SEM, TEM and FTIR study of feldspar surfaces after reacting with acid solutions: in Water-Rock Interaction, D. L. Miles, ed.., Balkema, Rotterdam, 271–274.

    Google Scholar 

  • Grasshoff, K., Ehrhardt, M., and Kremling, K. (1983) Methods of Seawater Analysis: Verlag Chemine, Weinheim, 419 pp.

    Google Scholar 

  • Helgeson, H. C. (1971) Kinetics of mass transfer among silicates and aqueous solutions: Geochim. Cosmochim. Acta 35, 421–469.

    Article  Google Scholar 

  • Helgeson, H. C. (1972) Kinetics of mass transfer among silicates and aqueous solutions: Correction and clarification: Geochim. Cosmochim. Acta 36, 1067–1070.

    Article  Google Scholar 

  • Hellmann, R., Eggleston, C. M., Hochella Jr., M. F., and Crerar, D. A. (1990) The formation of leached layers on albite surfaces during dissolution under hydrothermal conditions: Geochim. Cosmochim. Acta 54, 1267–1281.

    Article  Google Scholar 

  • Holdren Jr., G. R. and Adams, J. E. (1982) Parabolic dissolution kinetics of silicate mineral: An artifact of non-equilibrium precipitation processes?: Geology 10, 186–190.

    Article  Google Scholar 

  • Holdren Jr., G. H. and Berner, R. A. (1979) Mechanism of feldspar weathering—I. Experimental studies: Geochim. Cosmochim. Acta 43, 1161–1171.

    Article  Google Scholar 

  • Kawano, M. and Tomita, K. (1992) Formation of allophane and beidellite during hydrothermal alteration of volcanic glass below 200°C: Clays & Clay Minerals 40, 666–674.

    Article  Google Scholar 

  • Kawano, M., Tomita, K., and Kamino, Y. (1993) Formation of clay minerals during low temperature experimental alteration of obsidian: Clays & Clay Minerals 41, 431–441.

    Article  Google Scholar 

  • Knauss, K.G. and Wolery, T.J. (1986) Dependence of albite dissolution kinetics on pH and time at 25° and 70°C: Geochim. Cosmochim. Acta 50, 2481–2497.

    Article  Google Scholar 

  • Lagache, M. (1965) Contribution à l’étude de l’altération des feldspaths, dans l’eau, entre 100 et 200°C sous diverses pressions de CO2, et application à la synthese des minéraux: Bull. Soc. Fr. Miner. Crist. 88, 223–253.

    Google Scholar 

  • Lagache, M. (1976) New data on the kinetics of the dissolution of alkali feldspar at 200°C in CO2 charged water: Geochim. Cosmochim. Acta 40, 157–161.

    Article  Google Scholar 

  • Lagache, M., Wyart, J., and Sabatier, G. (1961) Mécanisme de la dissolution des feldspaths alcalins dans l’eau pure ou chargée de CO2 à 200°C: Comp. Rend. 253, 2296–2299.

    Google Scholar 

  • Luce, R. W., Bartlett, R. W., and Parks, G. A. (1972) Dissolution kinetics of magnesium silicates: Geochim. Cosmochim. Acta 36, 35–50.

    Article  Google Scholar 

  • Muir, I.J., Bancroft, G. M., and Nesbitt, H.W. (1989) Characteristics of altered labradorite surfaces by SIMS and XPS: Geochim. Cosmochim. Acta 53, 1235–1241.

    Article  Google Scholar 

  • Muir, I. J., Bancroft, G. M., Shotyk, W., and Nesbitt, H. W. (1990) A SIMS and XPS study of dissolving plagioclase: Geochim. Cosmochim. Acta 54, 2247–2256.

    Article  Google Scholar 

  • Muir, I. J. and Nesbitt, H. W. (1991) Effects of aqueous cations on the dissolution of labradorite feldspar: Geochim. Cosmochim. Acta 55, 3181–3189.

    Article  Google Scholar 

  • Nesbitt, H. W. and Muir, I. J. (1988) SIMS depth profiles of weathered plagioclase and processes affecting dissolved Al and Si in some acidic soil solutions: Nature 334, 336–338.

    Article  Google Scholar 

  • Nesbitt, H.W., MacRae, N.D., and Shotyk, W. (1991) Congruent and incongruent dissolution of labradorite in dilute, acidic, salt solutions: J. Geol. 99, 429–442.

    Article  Google Scholar 

  • Paces, T. (1973) Steady-state kinetics and equilibrium between ground water and granitic rock: Geochim. Cosmochim. Acta 37, 2641–2663.

    Article  Google Scholar 

  • Petit, J.-C., Dran, J.-C., Paccagnella, A., and Delia Mea, G. (1989) Structural dependence of crystalline silicate hydration during aqueous dissolution: Earth Planet. Sci. Lett. 93, 292–298.

    Article  Google Scholar 

  • Petrović, R. (1976) Rate control in feldspar dissolution. II. The protective effect of precipitates: Geochim. Cosmochim. Acta 40, 1509–1521.

    Article  Google Scholar 

  • Petrović, R., Berner, R. A., and Goldhaber, M. B. (1976) Rate control in dissolution of alkali feldspar. I. Studies of residual feldspar grains by X-ray photoelectron spectroscopy: Geochim. Cosmochim. Acta 40, 537–548.

    Article  Google Scholar 

  • Schott, T. and Petit, J.-C. (1987) New evidence for the mechanisms of dissolution of silica minerals: in Aquatic Surface Chemistry, W. Stumm, ed., John Wiley & Sons, New York, 293–315.

    Google Scholar 

  • Tamm, O. (1930) Experimentelle Studien über die Verwitterung und Tonbildung von Feldspaten: Chem. Erde 4, 420–430.

    Google Scholar 

  • Tazaki, K. (1986) Observation of primitive clay precursors during microcline weathering: Contrib. Mineral. Petrol. 92, 86–88.

    Article  Google Scholar 

  • Tazaki, K. and Fyfe, W. S. (1987a) Formation of primitive clay precursors on K-feldspar under extreme leaching conditions: in Proc. Inter. Clay Conf., Denver, 1985, L. G. Schultz, H. van Olphen, and F. A. Mumpton, ed.., The Clay Mineralogical Society, Bloomington, Indiana, 53–58.

    Google Scholar 

  • Tazaki, K. and Fyfe, W. S. (1987b) Primitive clay precursors formed on feldspar: Canadian J. Earth Sciences 24, 506–527.

    Article  Google Scholar 

  • van Olphen, H. (1971) Amorphous clay materials: Science 171, 90–91.

    Google Scholar 

  • Wollast, R. (1967) Kinetics of the alteration of K-feldspar in buffered solution at low temperature: Geochim. Cosmochim. Acta 31, 635–648.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawano, M., Tomita, K. Growth of Smectite from Leached Layer During Experimental Alteration of Albite. Clays Clay Miner. 42, 7–17 (1994). https://doi.org/10.1346/CCMN.1994.0420102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1994.0420102

Key Words

Navigation