Skip to main content
Log in

Dimepiperate Adsorption and Hydrolysis on Al3+-, Fe3+-, Ca2+-, and Na+-Montmorillonite

  • Published:
Clays and Clay Minerals

Abstract

The adsorption of the herbicide dimepiperate S-(α;α-dimethylbenzyl)-1-piperidinecarbothioate on homoionic Fe3+-, Al3+-, Ca2+-, and Na+-montmorillonite was studied in aqueous medium. The adsorption is described well by the Freundlich equation. The adsorption capacity decreases in the order Fe3+ > Al3+ > Ca2+ > Na+ clay. The dimepiperate adsorption from chloroform solution was also investigated by analytical, spectroscopic, and X-ray powder diffraction techniques. IR results suggest that the adsorption involves the interaction of the thioester carbonyl group of dimepiperate possibly with the surrounding water of metal ions. On Al3+ and Fe3+ clays, this interaction leads to hydrolysis of the thioester bond and formation of the thiol and carbamic acid derivatives that yield α-methylstyrene and piperidine, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonelli, C., Castagna, G., and Domenichini, P. (1986) II dimepiperate: nuovo erbicida per il diserbo del riso, efficace contro il giavone (Eschinocloa crus-galli): Atti Giornate Fitopatologiche 3, 327–36.

    Google Scholar 

  • Bellamy, L. J. (1975) The Infrared Spectra of Complex Molecules: Chapman and Hall, London, 231–243.

    Google Scholar 

  • Chiou, C.T., Peters, L. J., and Freed, V.H. (1979) Aphysical concept of soil-water equilibria for nonionic organic compounds: Science 206, 831–832.

    Article  Google Scholar 

  • Crosby, D. G. (1976) Non biological degradation of herbicides in the soil: in Herbicides, Vol. 2, L. J. Andus, ed., Academic Press, London, 65–97.

    Google Scholar 

  • Fusi, P., Pvistori, G. G., and Bosetto, M. (1988) Interaction of fluazifop-butyl and fluazifop with smectites: Appl. Clay Science 3, 63–73.

    Article  Google Scholar 

  • Gessa, C., Pusino, A., Solinas, V., and Petretto, S. (1987) Interaction of fluazifop-butyl with homoionic clays: Soil Sci. 144, 420–424.

    Article  Google Scholar 

  • Giles, C. H., McEwan, J. H., Nakhwa, S. N., and Smith, D. (1960) Studies in adsorption. XI. A system of classification of solution adsorption isotherms and its use in diagnosis of adsorption mechanisms and in measurements of specific areas of soils: J. Chem. Soc., 3973–3993.

    Google Scholar 

  • Hendershot, W. H. and Duquette, M. (1986) A simple barium chloride method for determining cation exchange capacity and exchangeable cations: Soil Sci. Soc. J. Amer. 50, 605–608.

    Article  Google Scholar 

  • Ikeda, K. (1982) Herbicidal property of a thiolcarbamate herbicide MY-93: Shokubutsu no Kagaku Chosetsu 17, 163–9. (C. A. 99, 65795b, 1983).

    Google Scholar 

  • Micera, G., Pusino, A., Gessa, C., and Petretto, S. (1988) Interaction of fluazifop with Al-, Fe3+-, and Cu2+-saturated montmorillonite: Clays & Clay Minerals 36, 354–358.

    Article  Google Scholar 

  • Mortland, M. M. (1970) Clay organic-complex and interactions: Adv. Agron. 22, 75–115.

    Article  Google Scholar 

  • Mortland, M. M. (1976) Interactions between clays and organic pollutants: in Proc. Inter. Conf. Mexico City, 1975, S. W. Bailey, ed., Applied Publishing, Wilmette, Illinois, 469–175.

    Google Scholar 

  • Pusino, A. and Gessa, C. (1990) Catalytic hydrolysis of diclofop-methyl on Ca-, Na- and K-montmorillonite: Pestic. Sci. 30, 211–216.

    Article  Google Scholar 

  • Pusino, A., Gessa, C., and Kozlowski, H. (1988) Catalytic hydrolysis of quinalphos on homoionic clays: Pestic. Sci. 24, 1–8.

    Article  Google Scholar 

  • Pusino, A., Micera, G., Gessa, C., and Petretto, S. (1989) Interaction of diclofop and diclofop-methyl with Al3+-, Fe3+-, and Cu2+-saturated montmorillonite: Clays & Clay Minerals 37, 558–562.

    Article  Google Scholar 

  • Sánchez-Camazano, M. and Sánchez-Martín, M. J. (1991) Hydrolysis of azinphosmethyl induced by the surface of smectites: Clays & Clay Minerals 39, 609–613.

    Article  Google Scholar 

  • Senesi, N. and Testini, C. (1982) Physico-chemical investigations of interaction mechanisms between s-triazine herbicides and soil humic acids: Geoderma 28, 314–468.

    Article  Google Scholar 

  • Senesi, N. and Testini, C. (1984) Theoretical aspects and experimental evidence of the capacity of humic substances to bind herbicide by charge-transfer mechanism: Chemosphere 13, 461–468.

    Article  Google Scholar 

  • Tanaka, M. (1984) Dimepiperate (Yucamate, MY-93)anew herbicide for rice: Jpn. Pestic. Inf. 45, 18–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pusino, A., Liu, W. & Gessa, C. Dimepiperate Adsorption and Hydrolysis on Al3+-, Fe3+-, Ca2+-, and Na+-Montmorillonite. Clays Clay Miner. 41, 335–340 (1993). https://doi.org/10.1346/CCMN.1993.0410308

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1993.0410308

Key Words

Navigation