Skip to main content
Log in

Modeling of H+ and Cu2+ Adsorption on Calcium-Montmorillonite

  • Published:
Clays and Clay Minerals

Abstract

The interaction of H+- and Cu2+-ions with Ca-montmorillonite was investigated in 0.1 mol/dm3 solutions of Ca(CIO4)2 at 298.2 K by Potentiometrie titrations using both glass electrodes (for H+) and ion specific electrodes (for Cu2+ ). The experimental data were interpreted on the basis of the surface complexation model. The calculations were performed with the least-squares program FITEQL (Westall, 1982) using the constant capacitance approximation. The best fit was obtained with a set of equilibria of the general form

$$\begin{array}{c}pH^{+}+qCu^{2+}+\equiv{SOH}\Leftrightarrow(H^{+})_p(Cu^{2+})_q(\equiv{SOH})^{(p+2q)+}\\ \beta_{p,q(int)}^s=\frac{\text[H_pCu_q(\equiv{SOH})^{(p+2q)}]}{\text[H^+]^{p}[Cu^{2+}]^q[\equiv{SOH}]}\end{array}$$

and the constants logβ S1,0(int) = 8.16 (± 0.04), logβ-1,0(int)S = −8.71 (± 0.08), logβ0,1(int)S = 5.87 (± 0.06), logβ−1,1(int)S = −0.57 (± 0.12), logβ−2,1(int)S = −6.76 (± 0.02). An appropriate modeling of the H+ adsorption data requires the introduction of a second surface group ≡ TOH with the acidity constant

$$\equiv{TOH}-H^+\Leftrightarrow{\equiv}{TO}^-log\beta_{-1,0(int)}^S=-5.77(\pm0.07).$$

In addition, the ion exchange equilibria Ca2+ − Cu2+ and Ca2+ − H+ had to be taken into account. Arguments are presented to identify the groups ≡ SOH and ≡ TOH as surface aluminol groups =Al(OH)(H2O) and surface silanol groups ≡ Si-OH, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baes, C. F., and Mesmer, R. E. (1976) The Hydrolysis of Cations: Wiley Interscience, New York, p. 189.

    Google Scholar 

  • Banin, A. (1969) Ion exchange isotherms of montmorillonite and structural factors affecting them: Isr. J. Chem. 6, 27–36.

    Article  Google Scholar 

  • Benson, L. V. (1982) A tabulation and evaluation of ion exchange data on smectites: Environ. Geol. 4, 23–29.

    Article  Google Scholar 

  • Davis, C. W. (1962) Ion association: Butterworths, London.

    Google Scholar 

  • Davis, J. A. and Kent, D. B. (1990) Surface complexation modeling in aqueous geochemistry: in Mineral-water Interface Geochemistry, M. F. Hochella, Jr. and A. F. White, eds. Reviews in Mineralogy 23, Mineralological Society of America, Washington, D.C., 177–260.

    Chapter  Google Scholar 

  • El-Sayed, M. H., Burau, R. G., and Babcock K. L. (1970) Thermodynamics of copper(II)-calcium exchange on Bentonite clay: Soil Sci. Soc. Am. J. 34, 397–400.

    Article  Google Scholar 

  • Eltantawy, I. M. and Arnold, P. W. (1973) Reappraisal of the ethylene glycol mono-ethyl ether (EGME) method for surface area estimations of clays: J. Soil Sci. 24, 232–238.

    Article  Google Scholar 

  • Fletcher, P. and Sposito, G. (1989) The chemical modeling of clay/electrolyte interactions for montmorillonite: Clay Miner. 24, 375–391.

    Article  Google Scholar 

  • Gaines, G. L. and Thomas, H. C. (1953) Adsorption studies on clay minerals. II. A formulation of the thermodynamics of exchange adsorption: J. Chem. Phys. 21, 714–718.

    Article  Google Scholar 

  • Hiemstra, T., Van Riemsdijk, W. H., and Bolt, G. H. (1989) Multisite proton adsorption modeling at the solid/solution interface of (Hydr)oxides: A new approach: J. Colloid Interface Sci. 133, 91–104.

    Article  Google Scholar 

  • James, R. O. and Parks, G. A. (1982) Characterization of aqueous colloids by their electrical double-layer and intrinsic surface chemical properties: Surface and Colloid Science, Vol. 12, E. Matijevic, ed., Plenum Publishing Corporation, New York.

  • King, E. J. (1965) Acid-Base Eauilibria: Pergamon Press, Oxford, 117–128.

    Google Scholar 

  • Martell, A. E. and Smith, R. M. (1976) Critical Stability Constants, Vol. 4: Inorganic Complexes: Plenum Press, New York and London.

    Google Scholar 

  • Pulfer, K. (1981) Kinetik und Mechanismus der Auflösung von γ-Al(OH)3 (Bayerit) in HNO3-HF-Lösungen: Ph.D. thesis, University of Berne, Switzerland, # of pp.

    Google Scholar 

  • Pulfer, K. (1984) Kinetics and mechanism of dissolution of Bayerite (γ-Al(OH)3) in HNO3-HF solutions at 298.2°K: J. Colloid Interface Sci. 101, No. 2, 554–564.

    Google Scholar 

  • Schindler, P. W. and Gamsjäger H. (1972) Acid-base reactions of the TiO2 (anatase)-water interface and the point of zero charge of TiO2 suspensions: Kolloid Z. und Z. Polymere 250, 759–765.

    Article  Google Scholar 

  • Schindler, P. W. and Stumm, W. (1987) The surface chemistry of oxides, hydroxides and oxide minerals: in Aquatic surface chemistry, W. Stumm, ed., Wiley Interscience, New York, 83–110.

    Google Scholar 

  • Schindler, P. W., Liechti, P., and Westall, J. C. (1987) Adsorption of copper, cadmium and lead from aqueous solution to the kaolinite/water interface: Netherlands J. of Agricultural Science 35, 219–230.

    Google Scholar 

  • Schindler, P. W. and Sposito, G. (1991) Surface complexation at (hydr)oxide surfaces: in Interactions at the Soil Colloid-Soil Solution Interface, G. H. Bolt, M. F. DeBoodt, M. H. B. Hayes, and M. B. McBride, eds. NATO ASI Series; Series E; Applied Sciences Vol. 190; Kluwer Academic Publishers Dordrecht, Boston, London.

  • Shaviv, A. and Mattigod, S. V. (1985) Cation exchnge equilibria in soils expressed as cation-ligand complex formation: Soil Sci. Soc. Am. J. 49, 569.

    Article  Google Scholar 

  • Sposito, G. (1981) Thermodynamics of Soil Solutions: Oxford Clarendon Press.

    Google Scholar 

  • Sposito, G., Holtzclaw, K. M., Charlet, L., Jouany, C., and Page, L. (1983) Sodium-Calcium and Sodium-magnesium exchange on Wyoming Bentonite in Perchlorate and chloride background ionic media: Soil Sci. Soc. Am. J. 47, 51–56.

    Article  Google Scholar 

  • Sposito, G. (1984) The Surface Chemistry of Soils: Oxford University Press, Oxford.

    Google Scholar 

  • Westall, J. C. (1987) Adsorption mechanisms in aquatic surface chemistry: in Aquatic Surface Chemistry, W. Stumm, ed., Wiley Interscience, New York, 3–32.

    Google Scholar 

  • Westall, J. C. (1982) A program for the determination of chemical equilibrium constants from experimental data: User’s Guide vs. 1.2., Oregon State University, Corvallis.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stadler, M., Schindler, P.W. Modeling of H+ and Cu2+ Adsorption on Calcium-Montmorillonite. Clays Clay Miner. 41, 288–296 (1993). https://doi.org/10.1346/CCMN.1993.0410303

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1993.0410303

Key Words

Navigation