Skip to main content
Log in

Effects of Acidification on the Chemical Composition and Layer Charge of Smectite from Calcareous Till

  • Published:
Clays and Clay Minerals

An Erratum to this article was published on 01 April 1995

Abstract

The objectives of the study were to determine the chemical composition and layer charge of smectite found in calcareous till of the Interior Plains region of western Canada and to examine the effects of acidification on alteration of the smectite. Samples of acidified and non-acidified (calcareous) late-Wisconsin till were obtained from four soil pits located immediately adjacent to an elemental sulfur block located in southern Alberta. Samples of the surface material (0–10 cm depth) had been subjected to extreme acidity for 25 years due to the oxidation of elemental sulfur and displayed pH values of about 2.0. Samples of the till obtained at depth (65–75 cm) remained calcareous with pH values between 7.3 and 7.6. A combination of analytical methods was used to determine the chemical composition of the smectite found in the samples. The layer charge of the smectite was determined independently using X-ray diffraction data for n-alkylammoniurn saturated specimens. Smectite found in the non-acidified calcareous material was characteristic of montmorillonite with a low content of Fe and very little substitution of Al for Si in the tetrahedral sheet. The smectite had a structural formula of M+0.40(Si3.96Al0.04)(Al1.56Fe3+0.10Mg0.33)O10(OH)2, which compared well with a mean value for layer charge of 0.399 mol(−)/O10(OH)2 determined using X-ray diffraction data for n-alkylammonium treated specimens. Smectite remaining in the till material subjected to extreme acidity underwent incongruent dissolution with a net loss of layer charge and preferential loss of octahedral Mg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey, S. W. (1972) Determination of chlorite compositions by X-ray spacings and intensities: Clays & Clay Minerals 20, 381–388.

    Article  Google Scholar 

  • Bailey, S. W. (1988) Chlorites: Structures and crystal chemistry: in Hydrous phyllosilicates (exclusive of micas), S. W. Bailey, ed.: Reviews in Mineralogy 19, Miner. Soc. Am., Washington, D.C., 347–404.

    Google Scholar 

  • Bailey, S. W., Alietti, A., Brindley, G. W., Formosa, M. L. L., Jasmund, K., Konta, J., Mackenzie, R. C, Nagasawa, K., Rausell-Colom, R. A., and Zvyagin, B. B. (1980) Summary of recommendations of AIPEA nomenclature committee: Clays & Clay Minerals 28, 73–78.

    Article  Google Scholar 

  • Berry, R. and Jorgensen, P. (1969) Separation of illite and chlorite by electromagnetic techniques: Clay Miner. 8, 201–212.

    Article  Google Scholar 

  • Bodine, M. W. (1987) CLAYFORM: A FORTRAN 77 computer program apportioning the constituents in the chemical analysis of a clay or other silicate mineral into a structural formula: Computers & Geosciences 13, 77–88.

    Article  Google Scholar 

  • Bundy, L. G. and Bremner, J. M. (1972) A simple titrimetric method for determination of inorganic carbon in soils: Soil Sci. Soc. Am. Proc. 36, 273–275.

    Article  Google Scholar 

  • Chittleborough, D. J. and Walker, P. H. (1988) Crystallinity of soil kaolinites in relation to clay particle-size and soil age: J. Soil Sci. 39, 81–86.

    Article  Google Scholar 

  • Curtin, D. and Mermut, A. R. (1985) Nature and behavior of montmorillonite in an inland marine shale from East central Saskatchewan: Soil Sci. Soc. Am. J. 49, 250–255.

    Article  Google Scholar 

  • Dudas, M. J. and Pawluk, S. (1982) Reevaluation of the occurrence of interstratified and other phyllosilicates in southern Alberta soils: Can. J. Soil Sci. 62, 61–69.

    Article  Google Scholar 

  • Foster, M. D. (1962) Interpretation of the composition and classification of chlorites: U.S. Geol. Survey. Prof. Paper 414-A.

  • Gast, R. G. (1977) Surface and Colloid Chemistry: in Minerals in Soil Environments, J. B. Dixon and S. B. Weed, eds., Soil Sci. Soc. Am., Madison, Wisconsin, 27–73.

    Google Scholar 

  • Genrich, D. A. and Bremner, J. W. (1972) A reevaluation of the ultrasonic vibration method of dispersing soils: Soil Sci. Soc. Am. Proc. 36, 944–947.

    Article  Google Scholar 

  • Häusler, W. and Stanjek, H. (1988) A refined procedure for the determination of the layer charge with alkylammonium ions: Clay Miner. 23, 333–337.

    Article  Google Scholar 

  • Jackson, M. L. (1979) Soil Chemical Analysis—Advanced Course: 2nd Edition, 11 th printing. Published by the author, Madison, Wisconsin 53705.

    Google Scholar 

  • Karathansis, A. D. and Hajek, B. F. (1983) Transformation of smectite to kaolinite in naturally acid soil systems, structural and thermodynamic considerations: Soil Sci. Soc. Am. J. 47, 158–163.

    Article  Google Scholar 

  • Karathansis, A. D. and Hajek, B. F. (1984) Evaluation of aluminum-smectite stability in naturally acid soils: Soil Sci. Soc. Am. J. 48, 413–417.

    Article  Google Scholar 

  • Kittrick, J. A. (1971) Montmorillonite equilibria and the weathering environment: Soil Sci. Soc. Am. Proc. 35, 815–820.

    Article  Google Scholar 

  • Kodama, H. (1979) Clay minerals in Canadian soils: Their origin, distribution and alteration: Can. J. Soil Sci. 59, 37–58.

    Article  Google Scholar 

  • Lagaly, G. (1981) Characterization of clays by organic compounds: Clay Miner. 16, 1–21.

    Article  Google Scholar 

  • Lagaly, G. (1982) Layer charge heterogeneity of vermiculites: Clays & Clay Minerals 30, 215–222.

    Article  Google Scholar 

  • Lagaly, G. and Weiss, A. (1969) Determination of layer charge in mica-type layer silicates: in Proc. Internal. Clay Conf. Tokyo, 1968. 1, L. Heller, ed., Israel University Press, Jerusalem 61–80.

    Google Scholar 

  • Laird, D. A. (1987) Layer charge and crystalline swelling of expanding 2:1 phyllosilicates. Ph.D. dissertation, Iowa State University, Ames, Iowa.

    Google Scholar 

  • Laird, D. A., Fenton, T. E., and Scott, A. D. (1988) Layer charge of smectites in an Agrialborll-Argiaquoll sequence: Soil Sci. Soc. Am. J. 52, 463–467.

    Article  Google Scholar 

  • Laird, D. A., Scott, A. D., and Fenton, T. E. (1987) Interpretation of alkylammonium characterization of soil clays: Soil Sci. Soc. Am. J. 51, 1659–1663.

    Article  Google Scholar 

  • Laird, D. A., Scott, A. D., and Fenton, T. E. (1989) Evaluation of the alkylammonium method of determining layer charge: Clay & Clay Minerals 37, 41–46.

    Article  Google Scholar 

  • McKeague, J. A. (ed.) (1978) Manual on soil sampling and methods of analysis: 2nd Edition. Can. Soc. Soil Sci. Subcommittee on methods of analysis.

  • Mehra, O. P. and Jackson, M. L. (1959) Constancy of the sum of mica unit cell potassium surface and interlayer sorption surface in vermiculite-illite clays: Soil Sci. Soc. Am. Proc. 23, 101–105.

    Article  Google Scholar 

  • Mermut, A. R., Ghebre-Egziabhier, K., and St. Arnaud, R. J. (1984) The nature of smectites in some fine textured lacustrine parent materials in southern Saskatchewan: Can. J. Soil Sci. 64, 481–494.

    Article  Google Scholar 

  • Miller, C. F., Stoddard, E. F., Bradfish, L. J., and Dollase, W. A. (1981) Composition of plutioic muscovite: Genetic implications: Can. Mineralogist 19, 25–34.

    Google Scholar 

  • Newman, A. C. D. and Brown, G. (1987) The Chemical composition of clays: in Chemistry of Clays and Clay Minerals, A. C. D. Newman, ed., Mineralogical Soc. Monograph 6, Longman, London.

  • Novak, I. and Cicel, B. (1978) Dissolution of smectites in hydrochloric acid. II Dissolution rate as a function of crystallochemical composition: Clays & Clay Minerals 26, 341–344.

    Article  Google Scholar 

  • Pawluk, S. (1961) Mineralogical composition of some grey wooded soils developed from glacial till: Can. J. Soil Sci. 41, 228–240.

    Article  Google Scholar 

  • Pawluk, S. (1971) Characteristics of fera eluviated Gleysols developed from acid shales in northwestern Alberta: Can. J. Soil Sci. 51, 113–124.

    Article  Google Scholar 

  • Pawluk, S. and Lindsay, J. D. (1964) Characteristics and genesis of Brunisolic soils of northern Alberta: Can. J. Soil Sci. 44, 292–303.

    Article  Google Scholar 

  • Rice, H. M., Forman, S. A., and Patry, L. M. (1959) A study of some profiles from major soil zones in Saskatchewan and Alberta: Can. J. Soil Sci. 39, 165–177.

    Article  Google Scholar 

  • Ross, G. J. and Kodama, H. (1986) Layer charge characteristics of expandable clays from soils: Trans. XIII Congress of International Soc. Soil Sci. 5, Hamburg, Germany, Aug. 1986, 355–370.

    Google Scholar 

  • Rozenson, I. and Heller-Kallai, L. (1978) Reduction and oxidation of Fe3 in dioctahedral smectites: III Oxidation of octahedral iron in montmorillonite: Clays & Clay Minerals 26, 88–92.

    Article  Google Scholar 

  • Rühlicke, G. and Kohler, E. E. (1981) A simplified procedure for determining layer charge by the n-alkylammonium method: Clay Miner. 16, 305–307.

    Article  Google Scholar 

  • Rühlicke, G. and Nierderbudde, E. A. (1985) Determination of layer-charge density of expandable 2:1 clay minerals in soils and loess sediments using the alkylammonium method: Clay Miner. 20, 291–300.

    Article  Google Scholar 

  • Schultze, D. G. and Dixon, J. B. (1979) High gradient magnetic separation of iron oxides and other magnetic minerals from soil clays: Soil Sci. Soc. Am. J. 43, 793–799.

    Article  Google Scholar 

  • Spiers, G. A. (1982) Mineralogy and geochemistry of parent materials of the Athabasca tar sands region, M.Sc. thesis, University of Alberta, Edmonton, Alberta.

    Google Scholar 

  • Spiers, G. A., Dudas, M. J., and Turchenek, L. W. (1989) Chemical and mineralogical composition of soil parent materials in northeast Alberta: Can. J. Soil Sci. 69, 721–737.

    Article  Google Scholar 

  • Theissen, D. A. and Harward, M. E. (1962) A paste method for preparation of slides for clay mineral identification by X-ray diffraction: Soil Sci. Soc. Am. Proc. 26, 90–91.

    Google Scholar 

  • Villeneuve, J. P., LaFrance, P., Banton, O., Frechette, P., and Robert, C. (1988) A sensitivity analysis of adsorption and degradation parameters in the modeling of pesticide transport in soils: J. Contaminant Hydro. 3, 77–96.

    Article  Google Scholar 

  • Warren, C. J. (1991) Weathering, trace elements, and smectite stability in extremely acid soil environments, Ph.D. thesis, University of Alberta, Edmonton, Alberta.

    Google Scholar 

  • Warren, C. J. and Dudas, M. J. (1992) Acidification adjacent to an elemental sulfur stockpile: I Mineral weathering: Can. J. Soil Sci. 72, 113–126.

    Article  Google Scholar 

  • Warren, C. J., Xing, B., and Dudas, M. J. (1990) Simple microwave digestion technique for elemental analysis of mineral soil samples: Can. J. Soil Sci. 70, 617–620.

    Article  Google Scholar 

  • Weiss, A. (1963) Mica-type layer silicates with alkylammonium ions: Clays & Clay Minerals 10, 191–224.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warren, C.J., Dudas, M.J. & Abboud, S.A. Effects of Acidification on the Chemical Composition and Layer Charge of Smectite from Calcareous Till. Clays Clay Miner. 40, 731–739 (1992). https://doi.org/10.1346/CCMN.1992.0400612

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1992.0400612

Key Words

Navigation