Skip to main content
Log in

An Electron Optical investigation of Aluminosilicate Cements in Silcretes

  • Published:
Clays and Clay Minerals

Abstract

Silcretes developed within the in situ regolith in the Barr Smith Range, Western Australia, were investigated using optical and electron-beam techniques. One of the cementing agents in these silcretes showed gel-like optical properties and had a variable aluminosilicate chemical composition at the scale of electron microprobe analysis so that it might be considered as allophane-like material. High resolution transmission electron microscopy demonstrated that the material consists of a fine-grained and poorly ordered kaolinite embedded in a matrix of amorphous silica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, J. H. and Peacor, D. R. (1986) Transmission and analytical electron microscopy of the smectite-to-illite transition: Amer. Mineral. 72, 353–356.

    Google Scholar 

  • Anand, R. R., Gilkes, R. J., Armitage, T. M., and Hillyer, J. W. (1985) Feldspar weathering in a lateritic saprolite: Clays & Clay Minerals 33, 31–43.

    Article  Google Scholar 

  • Baes, C. F. and Mesmer, R. E. (1976) The Hydrolysis of Cations: John Wiley, New York.

    Google Scholar 

  • Banfield, J. F. and Eggleton, R. A. (1988) Transmission electron microscope study of biotite weathering: Clays & Clay Minerals 36, 47–60.

    Article  Google Scholar 

  • Butt, C. R. M. (1981) The nature and origin of the lateritic weathering mantle, with particular reference to Western Australia: in Geophysical Prospecting in Deeply Weathered Terrain, H. A. Doyle, J. E. Glover, and D. I. Groves, eds., University of Western Australia, Geol. Dept. and Extension Service, Publ., 6, 11–29.

    Google Scholar 

  • Butt, C. R. M. (1983) Aluminosilicate cementation of saprolite, grits and silcretes in Western Australia: J. Geol. Soc. Aust. 30, 179–186.

    Article  Google Scholar 

  • Butt, C. R. M. (1985) Granite weathering and silcrete formation on the Yilgarn Block, Western Australia: Aust. J. Earth Sci. 32, 415–432.

    Article  Google Scholar 

  • Callen, R. A. (1983) Late Tertiary “grey billy” and the age and origin of surfacial silicification (silcrete) in South Australia: J. Geol. Soc. Aust. 30, 393–410.

    Article  Google Scholar 

  • Chadwick, O. A., Hendricks, D. M., and Nettleton, W. D. (1987a) Silica in Duric soils: I. A depositional model: Soil Sci. Soc. Am. J. 51, 975–982.

    Article  Google Scholar 

  • Chadwick, O. A., Hendricks, D. M., and Nettleton, W. D. (1987b) Silica in duric soils: II. Mineralogy: Soil Sci. Soc. Am. J. 51, 982–985.

    Article  Google Scholar 

  • Eggleton, R. A. (1987) Noncrystalline Fe-Si-Al-oxyhydrox-ides: Clays & Clay Minerals 35, 29–37.

    Article  Google Scholar 

  • Gilkes, R. J., Anand, R. R., and Suddhiprakarn, A. (1986) How the microfabric of soils may be influenced by the structure and chemical composition of parent minerals: in Trans. Int. Soil Sci. Conf. Hamburg 6, 1093–1106.

    Google Scholar 

  • Gilkes, R. J., Scholz, A., and Dimmock, G. M. (1973) Lateritic deep weathering of granite: /. Soil Sci. 24, 523–536.

    Article  Google Scholar 

  • Gilkes, R. J. and Suddhiprakarn, A. (1979) Biotite alteration in deeply weathered granite. II. The oriented growth of secondary minerals: Clays and Clay Minerals 27, 361–367.

    Article  Google Scholar 

  • Hutton, J. T., Twidale, C. R., and Milnes, A. R. (1978) Characteristics and origin of some Australian silcretes: in Silcrete in Australia, T. Langford-Smith, ed., University of New England, Armidale, Australia.

    Google Scholar 

  • Jones, J. B. and Segnit, E. R. (1971) The nature of opal. I. Nomenclature and constituent phases: J. Geol Soc. Aust. 18, 57–68.

    Article  Google Scholar 

  • Kahalf, F. I. (1988) Petrography and diagenesis of silcrete from Kuwait, Arabian Gulf: J. Sed. Petrol. 58, 1014–1022.

    Google Scholar 

  • Klimentidis, R. E. and Mackinnon, I. D. R. (1986) High-resolution imaging of ordered mixed-layer clays: Clays & Clay Minerals 34, 155–164.

    Article  Google Scholar 

  • Langford-Smith, T. (1978) Silcretes in Australia: Monogr. Ser., Dept. Geography, University of New England, Armidale, Australia.

    Google Scholar 

  • McCrea, A. F., Anand, R. R., and Gilkes, R. J. (1990) Min-eralogical and physical properties of lateritic pallid zone materials developed from granite and dolerite: Geoderma 47, 33–57.

    Article  Google Scholar 

  • Milnes, A. R. (1986) Armoured landscapes: Geology Today, 73–74.

    Google Scholar 

  • Milnes, A. R. and Hutton, J. T. (1974) The nature of mirocryptocrystalline titania in ‘silcrete’ skins from the Beda Hill area of South Australia: Search 5, 153–154.

    Google Scholar 

  • Milnes, A. R., and Thiry, M. (1992) Silcretes: in Weathering Soils and Paleosols, I. P. Martini and W. Chesworth, Eds., Elsevier, Amsterdam.

    Google Scholar 

  • Norton, S. A. (1973) Laterite and bauxite formation: Econ. Geol. 68, 353–361.

    Article  Google Scholar 

  • Oilier, C. D. (1978) Early landform evolution: in Australia, a Geography, J. N. Jeans, ed., Sydney University Press, Sydney.

    Google Scholar 

  • Parfitt, R. L. and Henmi, T. (1980) Structure of some al-lophanes from New Zealand: Clays & Clay Minerals 28, 285–294.

    Article  Google Scholar 

  • Plancon, A. and Tchoubar, C. (1977) Determination of structural defects in phyllosilicates by X-ray diffraction. Part II. Nature and proportions of defects in natural kaolin-ites: Clays & Clay Minerals 25, 436–450.

    Article  Google Scholar 

  • Senkayi, A. L., Dixon, J. B., Hossner, L. R., Yerima, B. P. K., and Wilding, L. P. (1985) Replacement of quartz by opaline silica during weathering of petrified wood: Clays & Clay Minerals 33, 525–531.

    Article  Google Scholar 

  • Singh, Balbir and Gilkes, R. J. (1991) Weathering of chro-mian muscovite to kaolinite: Clays & Clay Minerals 39, 571–579.

    Article  Google Scholar 

  • Singh, Balbir and Gilkes, R.J. (1992a) XP AS: An interactive computer program for analysis of powder X-ray diffraction patterns: Powder Diffraction 7, 6–10.

    Article  Google Scholar 

  • Singh, Balwant and Gilkes, R. J. (1992b) Properties of soil kaolinites from south-western Australia: J. Soil Sci. (in press).

    Google Scholar 

  • Smale, D. (1973) Silcretes and associated silica diagenesis in southern Africa and Australia: J. Sed. Petrol. 43, 1077–1089.

    Google Scholar 

  • Stephens, C. G. (1971) Laterite and silcrete in Australia: A study of the genetic relationship of laterite and silcrete and their companion materials, and their collective significance in the formation of the weathered mantle, soils, relief and drainage of the Australian continent: Geoderma 5, 5–52.

    Article  Google Scholar 

  • Summerfield, M. A. (1982) Distribution, nature and probable genesis of silcrete in arid and semi-arid southern Africa: in Aridic Soils and Geomorphic Processes, D. H. Yal-lon, ed., Catena Suppl. 1, 37–65.

    Google Scholar 

  • Summerfield, M. A. (1983) Silcrete: in Chemical Sediments and Geomorphology, A. S. Goudie and K. Pye, eds., Academic Press, London, 59–91.

    Google Scholar 

  • Thiry, M. and Milnes, A. R. (1990) Pedogenic and groundwater silcretes at Stuart Creek opal field, South Australia: J. Sed. Petrol. 61, 111–127.

    Google Scholar 

  • Thornber, M. R., Bettenay, E., and Russell, W. G. R. (1987) A mechanism of aluminosilicate cementation to form a hardpan: Geochim. Cosmochim. Acta 51, 2303–2310.

    Article  Google Scholar 

  • Trunz, V. (1976) The influence of crystallite size on the apparent basal spacings of kaolinite: Clays & Clay Minerals 24, 84–87.

    Article  Google Scholar 

  • Veblen, D. R. (1983) Microstructures and mixed layering in intergrown wonestie, chlorite, talc, biotite and kaolinite: Amer. Mineral. 68, 566–580.

    Google Scholar 

  • Veblen, D. R. and Buseck, P. R. (1980) Chain-width order and disorder in biopyriboles: Amer. Mineral. 64, 687–700.

    Google Scholar 

  • Wada, K. (1989) Allophane and imogolite: in Minerals in Soil Environments, J. B. Dixon and S. B. Weed, eds., Soil Science Soc. America, Madison, Wisconsin.

    Google Scholar 

  • Yau, Y. C, Anovitz, L. M., Essene, E. J., and Peacor, D. R. (1984) Phlogopite-chlorite reaction mechanisms and physical conditions during retrograde reaction in the marble formation, Franklin, New Jersey: Contrib. Mineral. Petrol. 88, 299–308.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, B., Gilkes, R.J. & Butt, C.R.M. An Electron Optical investigation of Aluminosilicate Cements in Silcretes. Clays Clay Miner. 40, 707–721 (1992). https://doi.org/10.1346/CCMN.1992.0400610

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1992.0400610

Key Words

Navigation