Skip to main content
Log in

Evidence for Halloysite Formation from Weathering of Ferruginous Chlorite

  • Published:
Clays and Clay Minerals

Abstract

Evidence of chlorite weathering to halloysite appears to be limited. Trioctahedral ferruginous chlorite occurring in granitic rocks and in situ altered phases isolated from the horizons of two soils in southern Korea were studied by scanning and transmission electron microscope (SEM, TEM), chemical, and X-ray diffraction (XRD) techniques to determine the mechanism of alteration and nature of alteration products. Chlorites were entirely converted to halloysite, kaolinite, and Fe-oxyhydroxides in the thick Bt horizon. In the E and BC horizons, in addition to 1:1 silicate clays and Fe-oxyhydroxides, chlorite-like and intergradient vermiculite-kaolin minerals were also found. Total chemical analysis of chlorite flakes revealed losses of substantial amounts of Fe and Mg. Large parallel sets of galleries suggested extensive exfoliation and expansion of chlorite flakes. Tubular halloysite formed bridges between the walls of galleries. The SEM and TEM analyses showed very distinct coatings (0.2–0.3 μm thick) of Fe-oxyhydroxides above and below the surface of galleries that consisted of rounded, sub-rounded, elongated, ultramicrocrystalline particles (goethite and hematite). The 1:1 mineral species found in the thick Bt horizon had a tubular and crumpled lamellar morphology. The presence of Fe likely creates a misfit between tetrahedral and octahedral sheets and results in the morphology of the 1:1 clays observed under SEM and TEM. The presence of intergradient minerals between chlorite and 1:1-type clays in the surface and transitional BC horizon suggests that, in addition to losses of OH sheet -Fe and -Mg, the chlorite with mostly Al-octahedra is partly transformed to double 1:1 silicate clays and intergradient minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, J. H., and Peacor, D. R. (1985) Transmission electron microscopic study of diagenetic chlorite in Gulf Coast argillaceous sediments: Clays & Clay Minerals 33, 228–236.

    Article  Google Scholar 

  • Allen, B. L., and Hajek, B. F. (1989) Mineral occurrence in soil environments: in Minerals in Soil Environment, J. B. Dixon and S. B. Weed, eds., Soil Sci. Soc. Amer., Madison, Wisconsin, 199–278.

    Google Scholar 

  • Anand, R. R., and Gilkes, R. J. (1984) Weathering of hornblende, plagioclase and chlorite in meta-dolerite, Australia: Geoderma 34, 261–280.

    Article  Google Scholar 

  • Barnhisel, R. I., and Bertsch, P. M. (1989) Chlorites and hydroxy-interlayered vermiculite and smectite: in Minerals in Soil Environments, J. B. Dixon and S. B. Weed, eds., Soil Sci. Soc. Amer., Madison, Wisconsin, 729–828.

    Google Scholar 

  • Bates, T. F. (1959) Morphology and crystal chemistry of 1:1 layer silicates: Amer. Mineral. 44, 78–114.

    Google Scholar 

  • Brown, J. L., and Jackson, M. L. (1973) Chlorite examination by ultramicrotomy and high resolution electron microscopy: Clays & Clay Minerals 21, 1–7.

    Article  Google Scholar 

  • Cho, H. D., and Mermut, A. R. (1992) Pedogenesis of two forest soils (Kandiustults) derived from metamorphosed granite in Korea. Soil Sci. Soc. Amer. J. 56, 517–525.

    Article  Google Scholar 

  • Churchman, G. J. (1980) Clay minerals formed from micas and chlorites in some New Zealand soils: Clay Miner. 15, 59–76.

    Article  Google Scholar 

  • Coffman, C. B., and Fanning, D. C. (1975) Maryland soils developed in residuum from chlorite metabasalt having high amounts of vermiculite in sand and silt fractions: Soil Sci. Soc. Amer. Proc. 39, 723–732.

    Article  Google Scholar 

  • Deer, W. A., Howie, R. A., and Zussman, J. (1967) An Introduction to the Rock Forming Minerals: Longmans, Green and Co. Ltd., London.

    Google Scholar 

  • Dixon, J. B. (1989) Kaolin and serpentine group minerals: in Minerals in Soil Environments, J. B. Dixon and S. B. Weed, eds., Soil Sci. Soc. of Amer., Madison, Wisconsin, 467–525.

    Google Scholar 

  • Fawcett, J. J., and Yoder, H. S., Jr. (1966) Phase relationships of chlorites in the system MgO-Al2O3-SiO2-H2O: Amer. Mineral. 51, 353–380.

    Google Scholar 

  • Ghabru, S. K., Mermut, A. R., and St. Arnaud, R. J. (1987) The nature of weathered biotite in sand-sized fractions of Gray Luvisols (Boralfs) in Saskatchewan, Canada: Geoderma 40, 65–82.

    Article  Google Scholar 

  • Ghabru, S. K., Mermut, A. R., and St. Arnaud, R. J. (1990) Isolation and characterization of an iron-rich, chlorite-like mineral from soil clays: Soil Sci. Soc. Amer. J. 54, 281–287.

    Article  Google Scholar 

  • Giese, R. F. (1988) Kaolin minerals: Structure and stabilities: in Hydrous Phyllosilicates, S. W. Bailey, ed., Review in Mineralogy 19, Chap. 3, Mineralogical Society of America, 29–66.

    Article  Google Scholar 

  • Herbillon, A. J., and Makumbi, M. H. (1975) Weathering of chlorite in a soil derived from a chlorite-schist under humid tropical conditions: Geoderma 13, 89–104.

    Article  Google Scholar 

  • Jackson, M. L. (1962) Interlayering of expansible layer silicates in soils by chemical weathering: Clays & Clay Minerals 11, 29–46.

    Article  Google Scholar 

  • Johnson, W. M., and Maxwell, J. A. (1981) Rockand Mineral Analysis: John Wiley and Sons, New York.

    Google Scholar 

  • Kohyama, N., Fukushima, K., and Fukami, A. (1978) Observation of the hydrated form of tubular halloysite by an electron microscope equipped with an environmental cell: Clays & Clay Minerals 26, 25–40.

    Article  Google Scholar 

  • Lee, J. H., and Peacor, D. R. (1985) Ordered 1:1 interstratification of illite and chlorite: A transmission and analytical electron microscopy study: Clays & Clav Minerals 33, 463–467.

    Article  Google Scholar 

  • Lee, S. Y., Hyder, L. K., and Baxter, P. M. (1989) Mineralogical Characterization of Selected Shales in Support of Nuclear Waste Repository Studies: Oak Ridge National Laboratory, Tennessee.

    Google Scholar 

  • Lim, C. H., and Jackson, M. L. (1982) Dissolution for total elemental analysis: in Methods of Soil Analysis, 2nd ed., A. L. Page, ed., Amer. Soc. Agron., Madison, Wisconsin, 5–7.

    Google Scholar 

  • Mehra, O. P., and Jackson, M. L. (1960) Iron oxide removal from soils and clays by dithionite-citrate system buffered with Na bicarbonate: Clays & Clay Minerals 7, 317–327.

    Article  Google Scholar 

  • Newman, A. C. D. (1987) Chemistry of clays and clay minerals. Mineralogical Society Monograph No. 6, Longman Scientific and Technical Group, Essex, U.K.

    Google Scholar 

  • Proust, D., Eymer, J. P., and Beaufort, D. (1986) Supergene vermiculitization of magnesian chlorite: Iron and magnesium removal processes: Clays & Clay Minerals 34, 572–580.

    Article  Google Scholar 

  • Quantin, P. (1990) Specificity of the halloy site-rich tropical or subtropical soils: 14th Inter. Congr. Soil Sci., Kyoto, Japan, August 12–18, 1990, VII, 16–21.

    Google Scholar 

  • Rabenhorst, M. C., Fanning, D. S., and Foss, J. E. (1982) Regularly interstratified chlorite/vermiculite in soils over meta-igneous mafic rocks in Maryland: Clays & Clay Minerals 30, 156–158.

    Article  Google Scholar 

  • Rich, C. I. (1961) Calcium determination for cation exchange capacity measurements: Soil Sci. 92, 226–231.

    Article  Google Scholar 

  • Rich, C. I. (1968) Hydroxy interlayers in expansible layer silicates: Clays & Clay Minerals 16, 15–30.

    Article  Google Scholar 

  • Righi, D., and Meunier, A. (1991) Characterization and genetic interpretation of clays in an Acid Brown soil (Dystrochrept) developed in a granitic saprolite: Clays & Clay Minerals 39, 519–530.

    Article  Google Scholar 

  • Ross, G. J. (1975) Experimental alteration of chlorites into vermiculite by chemical oxidation: Nature (London) 255, 133–134.

    Article  Google Scholar 

  • Ross, G. J., and Kodama, H. (1974) Experimental transformation of a chlorite into a vermiculite: Clays & Clay Minerals 22, 205–211.

    Article  Google Scholar 

  • Ross, G. J., Wang, C., Özkan, A. I., and Rees, H. W. (1982) Weathering of chlorite and mica in a New Brunswick Podzol developed on till derived from chlorite-mica schist: Geoderma 27, 255–267.

    Article  Google Scholar 

  • St. Arnaud, R. J., and Whiteside, E. P. (1963) Physical breakdown in relation to soil development: J. Soil Sci. 14, 267–281.

    Article  Google Scholar 

  • Tazaki, K. (1981) Analytical electron microscopic studies of halloysite formation process—Morphology and composition of halloysite: in Internation Clay Conference 1981, H. Van Olphen and F. Veniale, eds., 573–584.

    Google Scholar 

  • Van Oort, F., Jongmans, A. G., Jaunet, A. M., van Doesburg, J. D. J., Elzass, F., and Feijtel, T. C. J. (1990) Characterization of clay formation in thin sections. A case study on halloysite neoformation in weathered pyroclastic parent rock in Guadeloupe (F.W.I.): 14th Inter. Congr. Soil Sci., Kyoto, Japan, August 12–18, 1990, VIII, 100–105.

    Google Scholar 

  • Velde, B. (1973) Phase equilibria studies in the system MgO-Al2O3-SiO2-H2O: Chlorite and associated minerals: Mineral. Mag. 39, 297–312.

    Article  Google Scholar 

  • Wada, S.-L, and Mizota, C. (1982) Iron-rich halloysite (10 Å) with crumpled lamellar morphology from Hokkaido, Japan: Clays & Clay Minerals 30, 315–317.

    Article  Google Scholar 

  • Wada, K., and Kakuto, Y. (1983a) Intergradient vermicu-lite-kaolinite mineral in a Korean Ultisol: Clays & Clay Minerals 31, 183–190.

    Article  Google Scholar 

  • Wada, K., and Kakuto, Y. (1983b) A new intergradient ver-miculite-kaolin mineral in 2:1 to 1:1 mineral transformation: Sciences Géologiques Mémoire Strasbourg 73, 123–131.

    Google Scholar 

  • Wada, K., Arneldas, O., Kakuto, Y., Wilding, L. P., and Hallmark, C. T. (1990) Clay minerals of four soils formed in eolian and tephra materials in Iceland: 14th Inter. Congr. Soil Sci., Kyoto, Japan, August 12–18, 1990, VIII, 437–438.

    Google Scholar 

  • Ward, C. R., and Roberts, F. I. (1990) Occurrence of spherical halloysite in bituminous coals of the Sydney Basin, Australia: Clays & Clay Minerals 38, 501–506.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Saskatchewan Institute of Pedology Contribution No. R702.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, H.D., Mermut, A.R. Evidence for Halloysite Formation from Weathering of Ferruginous Chlorite. Clays Clay Miner. 40, 608–619 (1992). https://doi.org/10.1346/CCMN.1992.0400516

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1992.0400516

Key Words

Navigation