Skip to main content
Log in

The Nature of Cation-Substitution Sites in Phyllosilicates

  • Published:
Clays and Clay Minerals

Abstract

A fundamental property of electrostatic potentials is their additivity. This study demonstrates that the electrostatic potential of a negatively charged, cation-substituted phyllosilicate layer can be represented as the sum of two potentials. Viewing cation substitution as a defect, one potential is derived from the atoms in a charge-neutral, unsubstituted layer such as pyrophyllite or talc. The “neutral-layer” potential rapidly decays to zero with distance from the layer and is determined primarily by the atoms in the first two atomic planes parallel to the (001) surface, i.e., the basal oxygens and tetrahedral cations. The second component, characterized as a “defect” potential, is a long-range potential derived from cation-substitution. The model used to compute the electrostatic potentials, a two-dimensional Ewald lattice sum, represents the atoms of a single phyllosilicate layer as point charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey, S. W. (1975) Cation ordering and pseudosymmetry in layer silicates: Amer. Mineral. 60, 175–187.

    Google Scholar 

  • Banos, J. O. (1985) Interlayer energy for partial slip and cleavage in muscovite: Philos. Mag. A 52, 145–152.

    Article  Google Scholar 

  • Bertaut, E. F. (1978) Electrostatic potentials, fields and field gradients: J. Phys. Chem. Solids 39, 97–102.

    Article  Google Scholar 

  • Bleam, W. F. and Hoffmann, R. (1988) Isomorphous substitution in phyllosilicates as an electronegativity perturbation: Its effect on bonding and charge distribution: Phys. Chem. Minerals 15, 398–408.

    Article  Google Scholar 

  • Bolt, G. H. (1979) The ionic distribution in the diffuse double layer: in Soil Chemistry B. Physico-Chemical Models, G. H. Bolt, ed., Elsevier, Amsterdam, 1–25.

    Google Scholar 

  • Brown, I. D. (1978) Bond valences—A simple structural model for inorganic chemistry: Chem. Soc. Rev. 7, 359–376.

    Article  Google Scholar 

  • Conard, J., Estrade-Szwarckopf H., Dianoux, A. J., and Poin-signon, C. (1984) Water dynamics in a planar lithium hydrate in the interlayer space of a swelling clay. A neutron scattering study: J. Phys. 45, 1361–1371.

    Article  Google Scholar 

  • Fanner, V. C. (1978) Water on particle surfaces: in The Chemistry of Soil Constituents, D. J. Greenland and M. H. B. Hayes, eds., Wiley, New York, 405–448.

    Google Scholar 

  • Farmer, V. C. and Russell, J. D. (1971) Interlayer complexes in layer silicates. The structure of water in lamellar ionic solutions: Trans. Faraday Soc. 67, 2737–2749.

    Article  Google Scholar 

  • Foot, J. D. and Colburn, E. A. (1988) Electrostatic potentials for surfaces of inorganic and molecular crystals: J. Mol. Graphics 6, 93–99.

    Article  Google Scholar 

  • Fripiat, J. G., Lucas, A. A., André, J. M., and Derouane, E. G. (1977) On the stability of polar surface planes of macroscopic ionic crystals: Chem. Phys. 21, 101–104.

    Article  Google Scholar 

  • Fripiat, J. J., Kadi-Hanifi, M., Conard, J., and Stone, W. E. E. (1980) NMR study of adsorbed water—III. Molecular orientation and protonic motions in the one-layer of a Li hectorite: in Magnetic Resonance in Colloid and Interface Science, J. P. Fraissard and H. A. Resing, eds., Reidel, Boston, 529–535.

    Google Scholar 

  • Giese, R. F. (1979) Hydroxyl orientations in 2:1 phyllosilicates: in Clays and Clay Minerals, Proc. 13th Natl. Conf, Madison, Wisconsin, 1964, W. F. Bradley and S. W. Bailey, eds., Pergamon Press, New York, 105–144.

    Google Scholar 

  • Giese, R. F. (1984) Electrostatic energy models of micas: Rev. Mineral. 13, 105–144.

    Google Scholar 

  • Heyes, D. M. and van Swol, F. (1981) The electrostatic potential and field in the surface region of lamina and semi-infinite point charge lattices: J. Chem. Phys. 75, 5051–5058.

    Article  Google Scholar 

  • Hoffmann, R. (1963) An extended Hiickel theory. I. Hydrocarbons: J. Chem. Phys. 39, 1397–1412.

    Article  Google Scholar 

  • Hoffmann, R. and Lipscomb, W. N. (1962) Theory of polyhedral molecules. I. Physical factorizations of the secular equation: J. Chem. Phys. 36, 2179–2189.

    Article  Google Scholar 

  • Jenkins, H. D. B. and Hartman, P. (1979) A new approach to the calculation of electrostatic energy relations in minerals: The dioctahedral and trioctahedral phyllosilicates: Philos. Trans. Royal Soc. London Ser. A 293, 169–208.

    Article  Google Scholar 

  • Jenkins, H. D. B. and Hartman, P. (1980) Application of a new approach to the calculation of electrostatic energies of expanded di- and trioctahedral micas: Phys. Chem. Minerals 6, 313–325.

    Article  Google Scholar 

  • Jenkins, H. D. B. and Hartman, P. (1982) Calculations on a model intercalate containing a single layer of water molecules: A study of potassium vermiculite, K2lMg6-(Si4_xAlJ2O20(OH)4, for 1 < × < 0: Philos. Trans. Royal Soc. London Ser. A 304, 397–446.

    Article  Google Scholar 

  • Kittel, C. (1986) Introduction to Solid State Physics: 6th ed., Wiley, New York, 646 pp.

    Google Scholar 

  • Kjellander, R. and Marcelja, S. (1985) Polarization of water between molecular surfaces: A molecular dynamics study: Chemica Scripta 25, 73–80.

    Google Scholar 

  • Lee, J. J. and Guggenheim, S. (1981) Single crystal x-ray refinement of pyrophyllite-17c: Amer. Mineral. 66, 350–357.

    Google Scholar 

  • Lee, W. W. and Choi, S.-I. (1980) Determination of the Madelung potential of ionic crystals with a polar surface by the Ewald method: J. Chem. Phys. 72, 6164–6168.

    Article  Google Scholar 

  • Low, P. F. (1962) Influence of adsorbed water on exchangeable ion movement: in Clays and Clay Minerals, Proc. 9th Natl. Conf, West Lafayette, Indiana, 1960, Ada Swineford, ed., Pergamon Press, New York, 219–228.

    Google Scholar 

  • Mathieson, A. McL. and Walker, G. F. (1954) Crystal structure of magnesium-vermiculite: Amer. Mineral. 39, 231–255.

    Google Scholar 

  • McBride, M. B. (1989) Surface chemistry of soil minerals: in Minerals in Soil Environments: 2nd ed., J. B. Dixon and S. B. Weed, eds., Soil Science Society of America, Madison, Wisconsin, 35–87.

    Google Scholar 

  • Odom, I. E. (1984) Smectite clay minerals: Properties and uses: Philos. Trans. Royal Soc. London Ser. A 311, 391–409.

    Article  Google Scholar 

  • Parry, D. E. (1975) The electrostatic potential in the surface region of an ionic crystal: Surface Sci. 49, 433–440.

    Article  Google Scholar 

  • Parry, D. E. (1976) Errata: The electrostatic potential in the surface region of an ionic crystal: Surface Sci. 54, 195.

    Article  Google Scholar 

  • Pauling, L. (1929) The principles determining the structure of complex ionic crystals: J. Amer. Chem. Soc. 51, 1010–1026.

    Article  Google Scholar 

  • Perdikatsis, B. and Burzlaff, H. (1981) Strukturverfeinerung am Talk Mg3[(OH)2Si4O10]: Z. Kristallogr. 156, 177–186.

    Google Scholar 

  • Prost, R. (1975) Interactions between adsorbed water molecules and the structure of clay minerals: Hydration mechanism of smectites: in Proc. Int. Clay Conf, Mexico City, 1975, S. W. Bailey, ed., Applied Publishing, Wilmette, Illinois, 351–359.

    Google Scholar 

  • Shirozu, H. and Bailey, S. W. (1966) Crystal structure of a two-layer Mg-vermiculite: Amer. Mineral. 51, 1124–1143.

    Google Scholar 

  • Slade, P. G., Stone, P. A., and Radoslovich, E. W. (1985) Interlayer structures of the two-layer hydrates of Na- and Ca-vermiculites: Clay & Clay Minerals 33, 51–61.

    Article  Google Scholar 

  • Smith, E. R. (1983) Electrostatic potential at a plane surface of a point ionic crystal: Physica 120A, 327–338.

    Article  Google Scholar 

  • Sposito, G. (1984) The Surface Chemistry of Soils, Oxford University Press, New York, 234 pp.

    Google Scholar 

  • Sposito, G. (1989) Surface reactions in natural aqueous colloidal systems: Chimia 43, 169–176.

    Google Scholar 

  • Sposito, G. and Prost, R. (1982) Structure of adsorbed water on smectites: Chem. Rev. 82, 553–573.

    Article  Google Scholar 

  • Veitch, L. G. and Radoslovich, E. W. (1963) The cell dimensions and symmetry of layer-lattice silicates. III. Octahedral ordering: Amer. Mineral. 48, 62–75.

    Google Scholar 

  • Watson, R. E., Davenport, J. W., Perlman, M. L., and Sham, T. K. (1981) Madelung effects at crystal surfaces: Implications for photoemission: Phys. Rev. B 24, 1791–1797.

    Article  Google Scholar 

  • Weiss, Z., Rieder, M., Chmielova, M., and Krajicek, J. (1985) Geometry of the octahedral coordination in micas: A review of refined structures: Amer. Mineral. 70, 747–757.

    Google Scholar 

  • Whangbo, M.-H., Hoffmann, R., and Woodward, R. B. (1979) Conjugated one and two dimensional polymers: Proc. Royal Soc. London Ser. A 366, 23–46.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bleam, W.F. The Nature of Cation-Substitution Sites in Phyllosilicates. Clays Clay Miner. 38, 527–536 (1990). https://doi.org/10.1346/CCMN.1990.0380510

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1990.0380510

Key Words

Navigation